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SUMMARY

Animal behavior is shaped by a variety of ‘‘internal states’’—partially hidden variables that profoundly shape
perception, cognition, and action. The neural basis of internal states, such as fear, arousal, hunger, motiva-
tion, aggression, and many others, is a prominent focus of research efforts across animal phyla. Internal
states can be inferred from changes in behavior, physiology, and neural dynamics and are characterized
by properties such as pleiotropy, persistence, scalability, generalizability, and valence. To date, it remains
unclear how internal states and their properties are generated by nervous systems. Here, we review recent
progress, which has been driven by advances in behavioral quantification, cellular manipulations, and neural
population recordings. We synthesize research implicating defined subsets of state-inducing cell types,
widespread changes in neural activity, and neuromodulation in the formation and updating of internal states.
In addition to highlighting the significance of these findings, our review advocates for new approaches to
clarify the underpinnings of internal brain states across the animal kingdom.
INTRODUCTION

Nervous systems are in a constant state of flux, with rich internal

dynamics that determine how brains respond to inputs and

produce outputs. The hidden processes that underlie these dy-

namics can be described as ‘‘internal states’’ and include

arousal, motivation, emotion, and varying homeostatic needs. In-

ternal states allow us to integrate information about our external

environment and internal physiological conditions into central-

ized brain states, which shape how sensory information is pro-

cessed and orchestrate appropriate behavioral and physiological

responses (Anderson, 2016; Bolles, 1967; Tinbergen, 1951).

Although internal states are difficult to observe directly, they

can be inferred from observations of an animal’s overt behavior

and systemic physiology or from within the brain, such as by

investigating neuronal dynamics or perturbing neural function.

For instance, an animal’s state of hunger can be determined

based on caloric deficit and circulating hormones or its state of

aggression inferred from observing attacks elicited by conspe-

cifics. Likewise, several recent studies have discovered consis-

tent changes in neuronal dynamics encompassing multiple cell

types and brain systems concomitant to behavioral and/or phys-

iological state changes (Gr€undemann et al., 2019; Lovett-Barron

et al., 2020; Xu et al., 2020). A wide variety of animals—from jel-

lyfish to humans—appear to organize their behavior in a state-

like fashion, suggesting that the neural mechanisms that underlie

the generation of internal brain states are evolutionarily ancient
(Nath et al., 2017; Weissbourd et al., 2021). In humans, changes

in state representation, switching, and timing are thought to

occur in many psychiatric and neurological diseases. Here, our

focus is on the study of experimentally tractable animal models,

but the ubiquity of internal states across animal species sug-

gests that general principles found in animals will hold relevance

for understanding the human condition in health and disease.

Several recent technical advances have spurred remarkable

progress in our ability to describe and investigate internal states

in animal models. These include new and improved methods for

tracking animal behavior, manipulating neurons, and analyzing

population-level neural activity. Studies across a range of animal

models now provide evidence that internal brain states can be

controlled by the actions of small subsets of neurons but can in-

fluence activity across broad swaths of the brain, often in paral-

lel. Across organisms, neuromodulators have been repeatedly

identified as central elements in the generation of internal states,

with a wide range of circuit organizations that deploy neuromo-

dulators in distinct manners (Bargmann, 2012; Getting, 1989;

Harris-Warrick and Marder, 1991; Marder, 2012; McGinley

et al., 2015b).

Here, we begin by defining internal states, focusing on the fea-

tures that characterize them. Next, we review the experimental

approaches used to study internal states, the neural basis of in-

ternal states, and the central role that neuromodulation plays in

the formation and function of internal states. Finally, we close

by highlighting key emerging themes of internal state control
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Figure 1. Features of an example internal state
Using fear in rodents as an example, we show how a central internal state can exhibit multiple features and influence a number of behavioral and physiological
processes. Hallmark characteristics of an internal state, including persistence, scalability, and generalizability, are illustrated at left and pleiotropic effects
associated with the state of fear are displayed on the right.
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across species, including the ability of states to influence multi-

ple circuits and cell types in parallel, the action of neuromodula-

tors to mediate states in concert, the neural properties governing

state transitions, and the persistence of states via recurrent dy-

namics. The principles discussed here derive from a large and

diverse literature, growing out of psychology, neuroscience,

cognitive science, biology, and ethology over many decades.

As we cannot provide an exhaustive accounting of this work,

we instead focus on specific principles that are common across

organisms and highlight recent findings that have relevance for

scientists currently studying internal states.

DEFINING INTERNAL STATES

Internal brain states can be defined from changes in physiology,

behavior, and/or brain activity. We use the term ‘‘internal state’’

to refer to a state that can be independently controlled and that

can occur simultaneously with other states within the same ani-

mal. For example, hunger and fear represent distinct internal

states. The states that we discuss here all consist of changes

in nervous system function that can be inferred from an animal’s

behavior (although such inference can be challenging, because

states are not entirely overt; see below). In addition, some inter-

nal states involve changes in other parts of the body. For

example, hunger involves changes in gut metabolism, hormone

levels, and more. These interactions between the brain and the

periphery can be bidirectional. We consider these peripheral

changes to be important aspects of the state. We expect that

the definition of ‘‘internal state’’ will become more precise as

the field evolves, and we return to the complexities of this defini-

tion at the end of the review. In this review, we will start by dis-
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cussing characteristic features of internal states, how they can

be inferred from behavioral and physiological changes, and

then their neuronal correlates.

Features of internal states
Internal states enable us to produce flexible and adaptive behav-

ioral and physiological responses in a wide range of different

settings. These internal states are stable enough to organize be-

haviors over long timescales and flexible enough to facilitate

adaptive (or maladaptive) responses to different circumstances

or changing environments. To be both flexible and stable, inter-

nal states often possess the following features: pleiotropy,

persistence, scalability, generalizability, and valence (Figure 1)

(Adolphs and Anderson, 2013; Anderson, 2016; Darwin, 1872;

Tye, 2018). Pleiotropy refers to the feature that each state influ-

ences multiple aspects of behavior and physiology in parallel,

such as body temperature, respiration, locomotion, sensory

responsiveness, and more (Figure 1). Persistence describes

the ability of internal states to produce behavioral and physiolog-

ical responses that outlast the termination of the stimulus that

initiated the response. We do not consider individual motor ac-

tions to be states, but persistent sequences of motor actions

may be classified as states. Scalability indicates the ability of

these responses to scale with the magnitude of the stimulus.

Generalizability refers to the degree to which an internal state

can produce responses to stimuli that are distinct from the orig-

inal stimulus that elicited the response. Valence describes the

positive or negative affect associated with that state. Taken

together, the multifaceted and flexible nature of internal states

provides evolutionary advantages for organisms across the ani-

mal kingdom.
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A prototypical internal state: Fear
The abovementioned properties of internal states can be

conceptualized in the context of emotion and can be well illus-

trated using one of the most well-studied states in neuroscience

and psychology—fear (Adolphs, 2008; Dukes et al., 2021; Fan-

selow, 2018; Fanselow and Pennington, 2018; Janak and Tye,

2015; LeDoux and Daw, 2018; LeDoux, 2017, 2020; LeDoux

and Brown, 2017; Mobbs et al., 2019; Tovote et al., 2015; Tye

and Deisseroth, 2012). For example, if you are afraid of flying

on a plane, you might display a set of pleiotropic changes

including an increase in heart rate, galvanic skin response, and

feelings of anxiety, which persist well beyond the time in which

you are exposed to the plane (stimulus). These neural and pe-

ripheral responses might scale with the strength of the stimulus

such that they increase during turbulence, and they may gener-

alize to other similar stimuli, such as helicopters or cars. The

valence of this state is negative, causing you to avoid flying in

a plane as much as possible.

In laboratory settings, the internal state of fear is often investi-

gated using classical conditioning (Pavlov, 1927) in which an an-

imal, often a rodent, is conditioned to fear a previously neutral

cue (e.g., auditory tone) that, through training, comes to predict

the occurrence of an aversive stimulus (e.g., foot shock). These

classical conditioning paradigms allow for precise control over

experimental parameters and their effects on fear. In both

controlled, as well as more naturalistic settings, an animal may

display a wide variety of fear-related behaviors—fleeing,

freezing, and fighting—depending on the imminence of the

threat and the shape of the environment (Fanselow, 2018;

Fanselow et al., 2019; Fanselow and Lester, 1988; Perusini and

Fanselow, 2015). These fear behaviors demonstrate hallmark

characteristics of an internal state. For example, in rats and

mice, freezing behavior scales with the magnitude of the foot

shock (Fanselow and Bolles, 1979), generalizes to similar audi-

tory cues, and can persistwell beyond termination of the auditory

stimulus (Quinn et al., 2002). These behavioral readouts corre-

spond to physiological findings, which identify neurons that are

active during fear conditioning and/or expression, persist in their

activity beyond termination of a fear-eliciting stimulus, generalize

their activity to similar stimuli, and scale the intensity of their ac-

tivity depending on stimulus magnitude (e.g., Ciocchi et al.,

2010; Haubensak et al., 2010).

Nevertheless, it is important to note that despite being heavily

studied, fear represents one of the most hotly contested internal

states, with many questions currently unanswered (see Mobbs

et al., 2019 for a review of some of these issues). For example,

what are the behavioral readouts that best capture the internal

state of fear? How exactly is fear distinct from other similar

states, such as anxiety? Do these states lie on the same contin-

uum and thus collectively represent a larger internal state of

defense? How does this internal state interact with prior experi-

ence? Finally, some have even argued that it may not be possible

to truly study fear in nonhuman animals (LeDoux, 2020, 2021).

Thus, although fear is a powerful, well-studied example of an in-

ternal state, fear also represents some of the challenges facing

the field of internal states.

Although fear in rodents exemplifies many of the characteris-

tics of an internal state—at both the behavioral and neurobiolog-
ical level—examples of numerous behaviors influenced by

internal states can be found in almost every species studied. In

the sections below, we discuss a variety of internal states across

different model organisms. Like many areas of biology searching

for general principles, we believe that our understanding of inter-

nal states will benefit enormously from integrating results across

multiple organisms and behavioral conditions (Jourjine and

Hoekstra, 2021; Katz, 2016; Laurent, 2020; Yartsev, 2017).
EXPERIMENTAL APPROACHES TO STUDYING
INTERNAL STATES

Investigating the neural basis of internal states requires the accu-

rate inference of such states, extracted frommeasurements and

manipulations of behavior, physiological parameters, and envi-

ronmental context (Figure 2A). Here, we discuss different

approaches for inducing and measuring internal states in a lab-

oratory setting.
Experimentally inducing need states
Many studies rely on manipulating environmental or physiolog-

ical variables to induce internal states. For instance, exposing

animals to specific stimuli, environments, or physiological condi-

tions has proven useful to induce binary global state changes;

this includes induction of anxious states with threatening envi-

ronments (Calhoon et al., 2018; Tovote et al., 2015), induction

of hunger with food or nutrient deprivation (Livneh et al., 2020;

Sayin et al., 2019; Vogt et al., 2021), and induction of thirst with

water deprivation (Allen et al., 2019; Livneh et al., 2020; Zimmer-

man et al., 2017, Figure 2B). These studies often rely on single

characteristic behaviors as a readout (approach versus avoid-

ance, exploiting versus roaming, attack versus mounting), and

the robustness of these need-state-induced behaviors allow

for averaging results across individuals. Such approaches have

been useful in identifying key characteristics of deprivation-

induced need states, enabling the exploration of their neurobio-

logical underpinnings (Sternson, 2013).
Inferring internal states from overt locomotor behavior
Locomotion represents a key observable variable from which in-

ternal states can be inferred. When observing locomotion over

time, experimenters can classify epochs of fast-timescale ac-

tions into slower-timescale states distinguished by the probabil-

ity and content of the animal’smotion (Flavell et al., 2020; Ji et al.,

2021; Marques et al., 2020; Poulet and Petersen, 2008;

Figure 2C). Many organisms, including mammals, zebrafish,

flies, and worms, display stable, global changes in behavioral

patterns such as switches between active and inactive locomo-

tor states. Active states, characterized by longer movement

trajectories, include exploration and roaming. Inactive states,

characterized by little or short locomotor bouts, include idling,

dwelling, or exploiting (Flavell et al., 2013; Ji et al., 2021; Mar-

ques et al., 2020). These global patterns have been shown to

also exist in more complex organisms, such as rodents (Gr€unde-

mann et al., 2019). Similar state-dependent switches in active

versus passive behaviors have been described in the contexts

of active sensing versus quiescence (Poulet and Petersen,
Neuron 110, August 17, 2022 3
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Figure 2. Approaches to infer the presence of internal states from observable behavior
(A) Measuring overt behavior by tracking animal movement (examples: keypoint-based pose tracking in lemurs and nematodes).
(B) Inducing need states through environmental control (examples: social or caloric deprivation in rodents).
(C) Inferring internal state from transitions in observable movements (example: fly wing extension during courtship).
(D) Inferring states from the co-occurrence of multiple behavioral features (example: hunting states of larval zebrafish).
(E) Multiple states can interact with one another (example: a hungry rodent may show less fear when foraging under predation).
(F) State expression can vary across individuals (example: a rodent’s position in a social hierarchy influences their aggressivity and response to stress).
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2008), running versus resting (Keller et al., 2012), or high versus

low arousal (Rodriguez-Romaguera et al., 2020).

Measuring such bimodal changes in ‘‘state’’ can be achieved

by tracking entire animals in space (Flavell et al., 2020; Ji et al.,

2021; Marques et al., 2020) and measuring course locomotion

parameters or spatial coverage. Movement can also be charac-

terized in a more detailed manner, by tracking the position of the

body and limbs over time to classify states; these studies are

enabled by a recent proliferation of methods for tracking body

posture (Box 1). States can also be inferred from their effects

on the performance of repeatable motor behaviors with trial-

like structures. For instance, the response rate and reaction

time to sensory stimuli can be used to infer arousal or alertness

across species (Harris and Thiele, 2011; Lovett-Barron et al.,

2017; Maimon, 2011; McGinley et al., 2015b;Moore and Zirnsak,

2017; Musall et al., 2019).

Inferring internal states from higher-order behavior
Beyond classifying states from coarse locomotor behavior, recent

studies have also focused on extracting more complex behavioral

patterns todescribe internal states. Althoughmethods to track an-

imal behavior are increasingly powerful (see Box 1), it remains
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challenging to analyze and understand the high-dimensional

behavioral data arising from these tools (Berman, 2018; Datta

et al., 2019). Toward this goal, machine learning (ML) has become

key. For example, from the kinematic features extracted over long

timescales, ML algorithms are able to extract and classify behav-

ioral patterns and sequences, their variation across time and indi-

viduals, and their perturbation by drugs and disease models.

One such ML approach is Motion Mapper (Berman et al.,

2014), which identifies behavioral modules by low-dimensional

embedding and clustering. Recent evidence testing different un-

supervised approaches for behavioral mapping and clustering

argues that keeping the data in as many dimensions as possible

for clustering is preferable (Todd et al., 2017). Other techniques

use intuitive behavior annotation by the experimenter, which al-

lows supervised ML algorithms to quantify these behaviors (e.g.,

Janelia Automatic Animal Behavior Annotator [JAABA]; Kabra

et al., 2013). Another approach that has also been successful

is to measure multiple behavioral parameters and infer underly-

ing state(s) using probabilistic approaches. For instance, hidden

Markov models (HMMs) have been employed to infer behavioral

states in many organisms (Calhoun et al., 2019; Cermak et al.,

2020; Marques et al., 2020). However, these techniques rely on



Box 1. Methods for computational analysis of animal behavior

There has been a recent proliferation of techniques aimed at providing high-throughput, automated behavioral tracking and clas-

sification. These advances in behavioral analyses have been especially aided by the expansion of computational tools. Particularly,

recent technological advances in machine vision and machine learning have revolutionized the capacities to automatically track,

classify, and decode animal behavior. Artificial deep neuronal networks are a rich addition to the field of behavioral assessment

and may be the foundation of a totally new field of computational neuroethology (Datta et al., 2019). Recently developed methods

to measure animal behavior in different species include Stytra (�Stih et al., 2019), TRex (Walter and Couzin, 2021), Ctrax (Branson

et al., 2009), JAABA (Kabra et al., 2013), Optimouse (Ben-Shaul, 2017), LEAP (Pereira et al., 2019), DeepLabCut (Mathis et al.,

2018), DeepEthogram (Bohnslav et al., 2021), DeepPoseKit (Graving et al., 2019), DANNCE (Dunn et al., 2021), MARS (Segalin

et al., 2021), or a 3D virtual mouse (Bolaños et al., 2021). These methods allow for tracking everything from body parts to multi-

action behavioral motifs. Details of these novel approaches can be found in a number of authoritative reviews published recently

(Datta et al., 2019; Mathis and Mathis, 2020; Pereira et al., 2020).
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variables that are quantified and identified by the experimenter

as being state relevant.

Making use of the temporal sequence of behavioral actions

over time has been a particularly powerful approach to infer in-

ternal states (Figure 2D; Berman et al., 2016; Luxem et al.,

2020; Wiltschko et al., 2015; York et al., 2021). For example,

two recent studies using this approach were able to classify

the behavioral sequences that comprise the larval zebrafish’s

hunting behavior from specific eye and tail movements in the

context of available prey (Johnson et al., 2020; Mearns et al.,

2020). Another such technique, motion sequencing (Mo-seq;

Wiltschko et al., 2015), is an ethologically inspired behavioral

analysis method. In a recent landmark study, Wiltschko et al.

(Wiltschko et al., 2020) automatically and effectively decon-

structed behavioral differences and similarities elicited by a

panel of neuroactive and psychoactive drugs in mice. Mo-seq

was able to distinguish the behavioral changes elicited by the

drugs, which each elicit movement reductions through different

mechanisms, such as distinguishing catalepsy and sedation,

and are often confused in traditional behavioral assays. Mo-

seq was even able to predict drug dosage. These studies reveal

that temporal sequence-based approaches can capture sponta-

neous transitions between diverse internal states across highly

variable and diverse datasets.

Approaches for considering the co-existence and
interactions of internal states
Despite the advances discussed above, one complication is that

animals can be under the influence of multiple states at once. For

instance, individuals may exist in one coherent state that inte-

grates or selects frommultiple internal needs and outside stimuli.

For example, individuals may be influenced by diverse physio-

logical and affective need states in parallel, such as thirst,

hunger, fear, social isolation, and environmental conditions

(availability of food and social or predator encounters). These

needs and contextual changes elicit drives that compete or

may be mutually reinforcing depending on the context (Duister-

mars et al., 2018; Eiselt et al., 2021; Thornquist and Crickmore,

2020; Figure 2E). Together, these parameters may result in inte-

grated and complex internal states, whichmanifest as behavioral

switches when one drive overcomes another or may serve to

generate entirely unique behavior patterns. Indeed, recent

work has highlighted the overlap between distinct states such
as hunger and thirst (Eiselt et al., 2021; Gong et al., 2020). Inter-

estingly, the lateral hypothalamus (LH) of the mouse has been

found to be a key hub in organizing behavioral switches in

response to multiple diverse internal states (Nieh et al., 2016),

emphasizing the complex interactions between different need

and motivational states.

To further understand the dynamics and organization of multi-

ple internal states, such as whether they are organized hierar-

chically or in parallel, it may become necessary to study animal

behavior over longer timescales in naturalistic settings, where

animals are exposed to multiple needs and stimuli (Burnett

et al., 2019; Burnett et al., 2016; Thornquist and Crickmore,

2020). For instance, can multiple states stably coexist or do

brains exist in a unitary state that is a combination of multiple

lower-level states? Are some states more likely to ‘‘win’’ control

over behavior comparedwith other states? Such questions high-

light the field’s long-standing interest in understanding distinct

need states and how they sit in a hierarchy, with each basic

need emerging once a central need is met (Maslow, 1943). In

turn, these questions generate new ones—what are the rules

governing the hierarchy of state control over behavior? Do

different states adhere to different rules? Further experiments

are required to address these interesting questions.

Studying individuals to address the subjectivity of
internal states
A particular challenge in studying internal states arises from indi-

viduality. Past experiences, social hierarchies, contextual fac-

tors, genetic background, and hormonal influences may

determine the ‘‘personality’’ of individual animals and strongly

shape how each individual reacts in common circumstances.

Results from worms (Stern et al., 2017), flies (Honegger and de

Bivort, 2018), zebrafish (Pantoja et al., 2016, 2020), and mice

(Forkosh et al., 2019) argue that the neuronal underpinnings of in-

ternal states may best be addressed by studying individuals in

detail (Figure 2F).

As an example of how detailed and individualized behavioral

readouts may help the study of internal states, a recent study

found evidence that facial expressions might represent innate

and sensitive reflections of the subjective emotion state of indi-

vidual mice (Dolensek et al., 2020). Employing machine

vision and ML algorithms, Dolensek et al. categorized mouse

facial expressions objectively and quantitatively at millisecond
Neuron 110, August 17, 2022 5
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timescales. Notably, the authors demonstrated that the facial ex-

pressions revealed individual variability in intensity, value, and

persistence of subjective emotion states (Anderson and

Adolphs, 2014). Furthermore, other recent studies have found

that a large fraction of the brain’s activity can be explained by

movement variables read out from the face or the body (Musall

et al., 2019; Steinmetz et al., 2019; Stringer et al., 2019). These

results highlight how powerful each individual’s idiosyncratic

behavior is in driving brain-wide activity changes, independent

of task or stimulus involvement. This emphasizes the challenges

of summarizing data across multiple animals without the ability

to control for these variables.

In a powerful example of how prior experience can shape indi-

vidual differences and contribute to variability in internal states,

Remedios et al. (2017) found that exposure to social experience

results in a shift in both a mouse’s subsequent behavior and

neuronal ensemble activity in the ventromedial hypothalamus

(VMH). More specifically, naive male mice with no prior sexual

experience demonstrate a lack of aggression toward male con-

specifics, which correlates with an overlap in the neural ensem-

bles that represent male versus female conspecifics. As males

are exposed to repeated social experience, aggressive behavior

emerges, coupled with a separation in the neuronal ensembles

that represent male versus female conspecifics. Interestingly,

this shift to aggressive behavior and separable male/female en-

sembles in the VMH varies across mice, highlighting that

the neural populations driving aggression are subject to plas-

ticity and sensitive to additional factors controlling individual

differences.

Taken together, these findings collectively argue that experi-

ences, as well as changes in bodily condition or physiological

need, exert powerful influences on the neuronal machinery

from which internal states emerge. Consequently, the internal

states evoked by the same set of influences may differ depend-

ing on an individual’s history and current contextual standing. An

important question for future research will be to ask how endo-

crine, genetic, plasticity, and potentially further mechanisms

may drive individual differences in internal state. It will be crucial

to have individualized readouts of internal states at hand to

tackle this important question.

Approaches toward improved state definitions
As mentioned above, internal states induce pleiotropic effects,

impacting multiple behaviors and physiological parameters in

parallel. Thus, to improve and refine the description and detec-

tion of changes in internal states, integrated multidimensional

analyses including behavioral but also physiological measure-

ments may be key. The available measures, and ease of using

them, vary depending on the species being studied. For

instance, the transparent larval zebrafish may be useful for vide-

ography of the body (heartbeat, muscle tone, blood flow, and

respiratory movements) but less useful for testing circulating

hormones (limited volume of blood to test). Larger animals, in

contrast, can allow for chronically inserted devices that monitor

metabolism and systemic physiology.

Future improvements in themethods to classify behaviors and

internal states will likely involve making more measurements—

simultaneous posture recording, physiological measures, and
6 Neuron 110, August 17, 2022
descriptions of the sensory environment and individual animal

history. Importantly, ensuring that tools for collecting and inte-

grating such multimodal information are ‘‘user friendly’’ will be

critical in their widespread use, an essential component for the

field’s understanding of a given internal state. These approaches

can provide more rigorous definitions of states that have already

been extensively studied (arousal, fear, and hunger) and may

also reveal currently unknown ‘‘states’’ that explain trends in

behavior but do not yet have a clear label. For instance, recent

studies have identified previously unrecognized connections be-

tween neural dynamics andmetabolic state (Tingley et al., 2021).

Ultimately, states may be best described directly from the brain

itself. We next discuss common signatures of internal states

across the brains of different species.

THE NEURAL BASIS OF INTERNAL STATES

Internal states have the capacity to influence multiple aspects of

sensation, cognition, action, and systemic physiology. Here, we

discuss recent work highlighting how distinct populations of

neurons can generate different internal states and the influence

of such states on the rest of the nervous system.

A neuronal population code of behavioral states
Several recent studies across different species and brain regions

have highlighted that the behavioral state of an animal can be

predicted and thus readout from the activity dynamics of

neuronal populations that either span brain-wide networks or

dominate single brain regions. For example, a study in the rodent

basolateral amygdala found that two distinct neuronal popula-

tions of principle neurons predicted the switches between

exploratory versus nonexploratory defensive states (Gr€unde-

mann et al., 2019). Similarly, networks of neurons encoding

exploitation versus exploration states have been identified in

fish (Marques et al., 2020) and worms (Ji et al., 2021). Interest-

ingly, behavioral states can be decoded with high accuracy

from the combinatorial activity of diverse molecularly defined

cell types but not from the activity of single cell types (Lovett-

Barron et al., 2020; Xu et al., 2020). These and similar findings

highlight that internal states are represented in neuronal popula-

tion dynamics that recruit neurons across multiple different cell

types, brain regions, and neuromodulatory systems.

Small subsets of neurons can drive state transitions
As described above, internal states are represented in combina-

torial and complex activity dynamics of entire neuronal popula-

tions. Nevertheless, the use of methods to precisely activate

neurons (Luo et al., 2018) has revealed that even small subsets

of neurons can drive persistent brain states with influence over

a variety of behavioral features in multiple different species. Dra-

matic examples abound in the study of rodent behavior, where

optogenetic or chemogenetic activation of genetically and

anatomically defined subsets of neurons can evoke specific be-

haviors and associated brain states (Anderson, 2016; Sternson,

2013; Yizhar et al., 2011). This includes the induction of behav-

iors associated with hunger upon stimulation of Agouti-related

peptide (AGRP) neurons in the arcuate nucleus of the hypothal-

amus (Aponte et al., 2011; Chen et al., 2016; Krashes et al.,
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Figure 3. Collateralized projections and brain-wide influence of state-inducing neurons
(A) Schematic of projections from AGRP+ hunger-promoting neurons (red) in the arcuate nucleus of the mouse hypothalamus.
(B) Schematic of projections from P1 social arousal-promoting neurons (red) in the fly.
(C) Schematic of projections from the serotonergic NSM neuron (red) that promotes dwelling states in the nematode.
(D) Stimulating thirst-promoting neurons in the lamina terminals recapitulates the effects of natural thirst on behavior (bottom left) and neural populations recorded
in multiple brain regions (right; from Allen et al., 2019).
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2011), thirst-related behavior with stimulating neurons in the lam-

ina terminalis (Allen et al., 2017a; Augustine et al., 2018; Leib

et al., 2017; Oka et al., 2015), or aggressive behaviors with stim-

ulation of neurons in the VMH (Falkner et al., 2016; Lee et al.,

2014; Lin et al., 2011), among many other examples.

These experiments have revealed some important shared fea-

tures of diverse state-inducing neural populations: brief activa-

tion of these cells drives persistent states, and these cells project

to multiple brain regions to induce different aspects of the core

brain state (Figure 3A). For instance, activation of hunger-asso-

ciated AGRP neurons induces an aversive motivational state

(Berrios et al., 2021; Betley et al., 2015), promoting mice to eat

food when available (Aponte et al., 2011; Krashes et al., 2011).

Feeding is driven by AGRP neuron projections to the paraven-

tricular hypothalamus (PVH), LH, paraventricular thalamus

(PVT), and bed nucleus of the stria terminalis (BNST) (Atasoy

et al., 2012; Betley et al., 2013; Horio and Liberles, 2021) but

also primes mice to eat more later through its projection to the

PVH (Chen et al., 2019; Chen et al., 2016; Jikomes et al.,

2016), increases attention to visual and olfactory food cues

through projections to the PVT (Horio and Liberles, 2021; Livneh

et al., 2017, 2020), suppresses fear and aggressive behavior

through projections to the medial amygdala (Padilla-Coreano

et al., 2016), and inhibits inflammatory nociception and the ef-

fects of appetite suppressants through projections to the para-

brachial nucleus (PBN) (Alhadeff et al., 2018; Essner et al.,

2017). Similarly, activation of thirst-associated neurons in the
medial preoptic nucleus (MPON) that project to the PVT, PVH,

or LH induces drinking behavior when water is present and

induce a negative motivational drive (Allen et al., 2017a; Leib

et al., 2017), in addition to increasing blood pressure through

the hypothalamic projections (Leib et al., 2017). Furthermore,

stimulation of defensive neurons in the dorsomedial subregion

of the ventromedial hypothalamus (VMHdm) can produce defen-

sive behaviors through projections to the anterior hypothalamus

and midbrain (Wang et al., 2015), inhibit mounting behaviors and

ultrasonic vocalizations through projections to the medial pre-

optic area (MPOA) (Karigo et al., 2021), drive biting through out-

puts to the periaqueductal gray (PAG) (Falkner et al., 2020), and

possess a number of other output projections (Lo et al., 2019).

These features allow a small set of neurons to influence a diver-

sity of behavioral outcomes through specialized projections, a

collateralization that is also present in the control of arousal

(Poe et al., 2020), anxiety (Kim et al., 2013), and parenting

(Kohl et al., 2018) in rodent brains.

The projections of putative state-control neurons are particu-

larly well studied in rodents, but these principles have been

found across multiple model systems, where stimulation of small

sets of neurons with broad projections can influence internal

states (Figures 3B and 3C). In the compact C. elegans nervous

system, the activation of one or few neurons can induce state

transitions, including the initiation of roaming and dwelling by

pigment-dispersing factor (PDF)- and serotonin-releasing neu-

rons, respectively (Churgin et al., 2017; Flavell et al., 2013;
Neuron 110, August 17, 2022 7



Box 2. Challenges and caveats for the manipulation of state-triggering neurons

Optogenetic, chemogenetic, and thermogenetic techniques can allow for targeted manipulation of state-promoting neurons, but

these approaches may not reproduce the natural dynamics of these cells recorded in vivo. Although some molecularly defined

subpopulations of neurons show concerted neural activity that can be reasonably approximated with optogenetic perturbations

(i.e., mouse AGRP neurons; Betley et al., 2015; Chen et al., 2015; Mandelblat-Cerf et al., 2015), other populations show complex

dynamics within a molecularly defined subpopulation (i.e., mouse VMHvl neurons; Falkner et al., 2014; Karigo et al., 2021; Reme-

dios et al., 2017). In addition, state-triggering neurons may fluctuate on various timescales, from slow tracking of homeostatic fea-

tures (Sternson, 2013; Zimmerman et al., 2017) to faster activity of arousal-associated neurons, which can track bias in behavioral

(i.e., reaction time) and physiological (i.e., pupil diameter) measures (Maimon, 2011; McCormick et al., 2020; McGinley et al.,

2015b). Manipulating the activity of neurons across fast and slow timescales, although accounting for their potentially different ef-

fects (Hong et al., 2018; Otchy et al., 2015; Wolff and Ölveczky, 2018), remains a challenge. In addition, many neurons with state-

related activity may not necessarily be able to evoke the same state upon stimulation (Lovett-Barron et al., 2017).

With these caveats in mind, we should be critical about whether or not artificial activation appears to trigger seemingly ‘‘normal’’

behavioral manifestations of internal states. Aremanymanipulations sufficiently natural enough or constrained by the properties of

downstream circuits to remain within the relevant neural population space (Jazayeri and Afraz, 2017; Wolff and Ölveczky, 2018)?

Are conventional manipulations of neuromodulatory cell types routinely achieving saturating effects on downstream populations

(Coddington andDudman, 2018)? Are our measurements too coarse to discern the difference between natural- and unnatural-trig-

gered states (e.g., measuring effects through neuron spike rates, overt behavior, or cortical EEG, for example) and would more

nuanced measurements resolve these distinctions (e.g., measuring effects through ionic conductance, context-dependent etho-

grams, or manifold of population dynamics)?

In general, a better capacity to precisely match and perturb aspects of natural activity should reveal which components of neural

dynamics are important or dispensable for the initiation, persistence, and multiplexing of internal states.
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Ji et al., 2021), and the induction of low arousal/sleep states by

peptidergic neurons (Nath et al., 2016; Turek et al., 2013,

2016). In Drosophila, aggression can be induced by activation

of tachykinin-expressing neurons (Asahina et al., 2014), and

threat displays are evoked by a small subset of anterior inferior

protocerebrum neurons (Duistermars et al., 2018). A set of

male-specific P1 neurons evokes a persistent internal state of

social arousal, which enhances either aggression or courtship

behaviors depending on context (Anderson, 2016; Bath et al.,

2014; Clowney et al., 2015; Hindmarsh Sten et al., 2021; Inagaki

et al., 2014a; Jung et al., 2020; von Philipsborn et al., 2011;

Zhang et al., 2016); analogous neurons in female Drosophila

have also been found to promote persistent behavior (Deutsch

et al., 2020).

Although these activation studies are informative, it is impor-

tant to consider the natural dynamics of state-triggering neurons

as well, which may contribute to internal states in a dynamic

regime not explored by artificial stimulation (Jazayeri and Afraz,

2017; Wolff and Ölveczky, 2018; Box 2).

Internal states influence neurons across the brain
Although internal states can be initiated by small subsets of neu-

rons, their broad effects on behavior and systemic physiology

suggest that states can have wide-ranging influence over the

nervous system. Across model systems, internal states have

been found to influence broad swaths of the brain—findings

made possible through the application of optical and electrical

techniques for large-scale cellular-level recording of neurons

across multiple brain regions in behaving animals (Ahrens and

Engert, 2015; Engel and Steinmetz, 2019; Lin et al., 2022; Urai

et al., 2022).

One class of internal state that has been studied extensively is

a state of arousal associated with movement, where awake an-
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imals’ transition between periods of overt movement and/or

enhanced alertness and periods of relative quiescence. In

C. elegans, motor activity drives a large number of neurons

across the head ganglia (Hallinen et al., 2021; Ji et al., 2021;

Nguyen et al., 2016), whereas extended quiescence broadly

suppresses activity (Nichols et al., 2017). In Drosophila, locomo-

tion or tethered flight increases the activity of neurons across

multiple brain regions (Aimon et al., 2019; Mann et al., 2021)

including identified neurons with roles in visual processing

(Chiappe et al., 2010; Hindmarsh Sten et al., 2021; Kim et al.,

2015, 2017a; Maimon et al., 2010; Strother et al., 2018; Suver

et al., 2012) and motor control (Ache et al., 2019). During zebra-

fish swimming, whole-brain imaging has revealed broad engage-

ment of neurons across the forebrain, midbrain, and hindbrain

(Ahrens et al., 2012; Chen et al., 2018; Dunn et al., 2016;

Lovett-Barron et al., 2020; Naumann et al., 2016), with wide-

spread suppression of neurons during quiescence (Andalman

et al., 2019; Mu et al., 2019). In behaving mice, locomotion

and/or movement of the face or limbs influences the activity of

neurons across multiple regions of dorsal neocortex (Allen

et al., 2017b; Kauvar et al., 2020; Makino et al., 2017; Niell and

Stryker, 2010) and subcortical areas (Musall et al., 2019; Stein-

metz et al., 2019; Stringer et al., 2019), even including the axons

of retinal ganglion cells (Liang et al., 2020; Schröder et al., 2020).

Overall, an animal’s brain displays dramatic and widespread

neural activity changes during movement versus quiescence.

Despite the convenience of measuring locomotion alone,

states of high arousal can occur without overt movements of

the limbs or face (Lovett-Barron et al., 2017; McGinley et al.,

2015a; Reimer et al., 2014; Vinck et al., 2015). Therefore, it

remains to be seen whether the neural dynamics in a rapidly

moving animal reflect the internal state of the animal (McGinley

et al., 2015b), efference copy-like feedback of motor actions
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(Ji et al., 2021; Kim et al., 2015, 2017a; Schneider et al., 2014), or

a combination thereof (Liu and Dan, 2019; McGinley et al.,

2015b; Reimer et al., 2014; Vinck et al., 2015). In cases where

large populations of neurons could be recorded simultaneously,

these locomotion/arousal-associated behavioral states are

characterized by the evolution of a low-dimensional population

state (Ahrens et al., 2012; Ji et al., 2021; Kato et al., 2015; Mu

et al., 2019; Stringer et al., 2019). Whether such states appear

at the cellular level in larger primate brains remains presently un-

known, but there is evidence for broadly synchronized brain re-

gions in humans (Fox et al., 2005; Raichle, 2015).

In addition to locomotion-related arousal, need states such as

hunger and thirst are also shown to modulate large-scale neural

activity. Hunger influences multiple aspects of Drosophila

behavior (Kim et al., 2017c), throughmodulation of olfactory neu-

rons (Ko et al., 2015; Root et al., 2011), gustatory neurons (Ina-

gaki et al., 2014b), motor-control neurons (Jourjine et al., 2016;

Yu et al., 2016), and other central brain populations (Inagaki

et al., 2012; Krashes et al., 2009; Park et al., 2016; Tsao et al.,

2018; Yapici et al., 2016). In zebrafish larvae, food restriction

biases fish toward hunting behavior (Johnson et al., 2020), with

hunger increasing the activity of serotonergic neurons in the

raphe (Filosa et al., 2016) and caudal hypothalamus (Wee

et al., 2019b), potentially by sensitizing visually responsive neu-

rons in the optic tectum (Filosa et al., 2016; Yokogawa et al.,

2012). In mice, hunger can influence cue-evoked activity in asso-

ciation cortices, amygdala, and brainstem (Burgess et al., 2016;

Calhoon et al., 2018; Gong et al., 2020; Livneh et al., 2017, 2020;

Lutas et al., 2019).

One particularly informative study (Allen et al., 2019) examined

the impact of thirst state on a mouse’s performance in a water-

motivated behavioral task. Using large-scale electrophysiolog-

ical recordings from populations of neurons across dozens of

brain regions, the authors found that the state of thirst waswidely

encoded as a low-dimensional population state. This state influ-

ences both spontaneous and cue-evoked neural activity—

largely increasing the rates and durations of task-responsive

neurons (Figure 3D). Notably, thirst-related dynamics across

multiple brain regions—but not all—were reinstated by optoge-

netic activation of dehydration-sensitive neurons in the subforn-

ical organ. This suggests that both natural and optogenetic in-

duction of an internal state can influence the activity of

neurons throughout the brain, but subtle differences in the set

of influenced brain regions distinguish between the two condi-

tions. Whether natural or optogenetically evoked thirst states

produce comparable subjective experiences for the animal or

are capable of modulating the same set of behaviors is presently

unclear.

As techniques for large-scale recording in freely moving ani-

mals advance (Cong et al., 2017; Grover et al., 2020; Ji et al.,

2021; Juavinett et al., 2019; Kim et al., 2017b; Nguyen et al.,

2016; Steinmetz et al., 2021), we expect that investigators will

find that other internal states also exert a brain-wide influence,

including those that evolve over longer timescales (Hrvatin

et al., 2020; Stern et al., 2017) or whose classification is more

complex, including parental behavior (Carcea et al., 2021; Kohl

et al., 2018; Marlin et al., 2015; Wu et al., 2014), emotional regu-

lation (Anderson and Adolphs, 2014; Dolensek et al., 2020), and
the multiple effects of social deprivation (Anneser et al., 2020;

Matthews et al., 2016; Tunbak et al., 2020; Zelikowsky

et al., 2018).

It remains to be seen whether such brain-wide concerted ac-

tivity patterns are important for the execution of state-dependent

behavior or are a mere consequence of shared activity across

recurrently connected circuits that span multiple brain regions.

This could be tested in future studies by independently manipu-

lating state-dependent population activity in different brain re-

gions and measuring the effects on state-dependent behaviors

and activity in other regions. To understand these mechanisms,

better knowledge of how the cellular actions of neuromodulators

collectively produce global brain state-dynamics is needed.

A CENTRAL ROLE FOR NEUROMODULATION

Perhaps the largest unifying factor identified in the control of

distinct internal states and their impact on behavior is the role

of neuromodulators (Bargmann, 2012; Bargmann and Marder,

2013; Flavell et al., 2013; Harris-Warrick and Marder, 1991; Ken-

nedy et al., 2014; Marder, 2012; Nusbaum and Blitz, 2012; Ta-

ghert and Nitabach, 2012; Zelikowsky et al., 2018).

Neuromodulators occupy an ideal position with respect to the

control of internal states—they modulate synaptic and cellular

function over long timescales because of their impact on

biochemical signaling and ion channel function, they can titrate

their effects via magnitude of modulator release, and they can

act locally as well as send far-reaching diffuse signals across

multiple brain regions (van den Pol, 2012). This makes them

prime candidates for the flexible, scalable, and persistent control

of behavior—key requirements for an internal state.

Foundational principles discovered in reduced
invertebrate circuits
Although much of this review focuses on the nervous systems of

animals amenable to behavioral study of internal states, it is

important to recognize that much of our understanding of neuro-

modulation derives from the study of invertebrate circuits in

reduced preparations—including the stomatogastric ganglion

of crustaceans, the swimming central pattern generator of the

mollusk, the motor system of the leech, the abdominal and

buccal ganglia of the sea slug Aplysia, and others (Bargmann,

2012; Bargmann and Marder, 2013; Getting, 1989; Harris-War-

rick and Marder, 1991; Kristan and Calabrese, 1976; Marder,

2002, 2012; Marder and Calabrese, 1996; Marder and Thiruma-

lai, 2002; Nusbaum andBlitz, 2012; Taghert andNitabach, 2012).

The experimental access of these circuits, often exhibiting

complex and flexible rhythmic dynamics in vitro, enable

detailed electrophysiological and biochemical analysis of func-

tioning neural networks across states of experimentally induced

modulation.

Pioneering studies using these preparations have established

that neuromodulators are capable of switching functional net-

works between different modes of population activity (Dickinson

et al., 1990; Eisen and Marder, 1984; Getting, 1989; Getting and

Dekin, 1985; Nusbaum and Beenhakker, 2002; Nusbaum et al.,

2001; Powell et al., 2021), through extrinsic and local sources

of neuromodulation (Katz, 1998; Katz and Frost, 1995, 1996;
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Figure 4. Fan-in and fan-out organization of
internal states and neuromodulatory neurons
Top: internal states are influenced by the integration
of multiple sensory, motor, and internal factors and
themselves influence multiple behaviors and physi-
ological processes. Bottom: similarly, many state-
inducing neuromodulatory cell types integrate in-
puts frommultiple brain regions and send outputs to
multiple downstream regions.
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Katz et al., 1994) that act uponmembrane excitability and synap-

tic transmission (Katz et al., 1994; Martin et al., 1997; Nadim and

Bucher, 2014). These neuromodulators exert their effects on

multiple neurons and networks in parallel (Brezina, 2010; Har-

ris-Warrick and Johnson, 2010; Harris-Warrick and Marder,

1991; Marder, 2012; Schwarz et al., 1980; Taghert and Nitabach,

2012), and each neuron or synapse is subject to modulation by

multiple sources, often with converging effects on common

intracellular signaling pathways and ionic conductances (Flamm

et al., 1987; Hempel et al., 1996; Kintos et al., 2016; Swensen

and Marder, 2000, 2001).

Although we cannot fully discuss the breadth and influence of

this literature here, we would like to emphasize how its influence

has greatly shaped subsequent work on state-dependent

behavior and neuromodulation in larger animals. As we will

discuss in the remainder of this section, these pioneering studies

identified themes that are present across small and large circuits

alike and raise still unanswered questions about how to interpret

the complexity and behavioral significance of heavily modulated

networks (Getting, 1989; Marder, 2012).

Neuromodulatory systems possess a fan-in/fan-out
organization
Most ascending neuromodulatory systems display a character-

istic organization in which a relatively small group of neuromodu-

lator-producing neurons receives diverse synaptic inputs and

sends diffuse projections to many brain regions (Figure 4; Ren

et al., 2018; Saper et al., 2010; Weissbourd et al., 2014). This

gives rise to a ‘‘fan-in’’ organization where signals converge

onto the neuromodulator-producing neurons and a ‘‘fan-out’’ or-

ganization in which the modulators impact many downstream

brain regions. This fan-out organization of neuromodulatory sys-

tems is observed at the anatomical level in diverse organisms

(Figure 5A). For example, in C. elegans, the serotonergic neuro-

scretory motor neuron (NSM) releases serotonin at nonsynaptic
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neurosecretory terminals that are apposed

to the nerve ring—the main neuropil of the

worm’s brain (Nelson and Colón-Ramos,

2013). In zebrafish, oxytocin neurons proj-

ect from the hypothalamus to influence

multiple regions across the forebrain,

midbrain, brainstem, and spinal cord (Her-

get et al., 2017; Lovett-Barron et al., 2020;

Wee et al., 2019a). In mice, multiple mono-

aminergic neuron types project across the

brain (Ren et al., 2019; Schwarz et al.,

2015). These are just a few of many exam-

ples. This overall organization likely allows
neuromodulatory systems to encode the brain states by inte-

grating multiple inputs and exert coordinated control by broadly

influencing multiple brain regions simultaneously.

A notable alternative to this organization is local processing

distributed across multiple sites, controlled by single (Zelikow-

sky et al., 2018, see ‘‘theme 1’’ below) or multiple neuropeptide

systems. Such distributed effects could be far more prominent

than is currently appreciated, driven by widespread expression

of neuropeptides and receptors, which has been observed in

C. elegans (Taylor et al., 2021) and in mammalian striatum (Cas-

tro and Bruchas, 2019) and neocortex (Smith et al., 2019). See

theme 1 below for more on this topic.

Volume transmission allows neuromodulatory systems
to signal diffusely and over long timescales
Another feature of neuromodulatory systems that may endow

them with a specialized ability to control internal states is their

action through volume transmission. Decades ago, electron mi-

croscopy studies of neurons that release biogenic amines, such

as dopamine, serotonin, and norepinephrine, revealed that these

cells often display putative active zones at nonsynaptic varicos-

ities along their axons (Calas et al., 1974; Descarries andMecha-

war, 2000; Descarries et al., 1996). These observations, which

have also been made for dense core vesicle release sites in neu-

ropeptide-releasing neurons, suggest that these transmitters

can be released extrasynaptically (Oti et al., 2021; Persoon

et al., 2018; van de Bospoort et al., 2012). In the case of neuro-

peptides, release from dendrites has even been observed (Lud-

wig and Leng, 2006). Many of these transmitters also function at

classical synapses and the degree to which they act via synaptic

versus extrasynaptic volume transmission varies by brain region

(Moukhles et al., 1997). In invertebrate systems, extrasynaptic

release sites for amines and neuropeptides are also widely

observed (White et al., 1986). In addition, these transmitters

can be released into circulating fluid, which allows them to act
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Figure 5. The broad reach and diverse cellular effects of neuromodulators
(A) Examples of broadly projecting neuromodulatory neurons in larval zebrafish (Herget et al., 2017), adult fly (Deng et al., 2019), and mouse (Li et al., 2018).
(B) Neuromodulation can target neurons across the spatial extent of the brain but, within target regions, acts at the scale of intracellular signaling.
(C) Schematics of various neuromodulatory signaling mechanisms in neurons, from rapid (top) to persistent (bottom).
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as neurohormones (Kravitz, 2000; Reiter et al., 2014; White

et al., 1986).

Extrasynaptic release of neuromodulators could allow these

transmitters to diffuse and persist in brain tissue, which might

allow for long timescale modulation of target cells. Indeed, the

receptors and transporters for these transmitters are commonly

localized microns or tens of microns away from active zones

(Callado and Stamford, 2000; Liu et al., 2021). Measurements

of extracellular amines and neuropeptides, via voltammetry

and newer fluorescent sensors (Sabatini and Tian, 2020), sup-

port the view that neuromodulators persist in extracellular space

for hundreds of milliseconds tomany seconds (Bunin andWight-

man, 1998; Callado and Stamford, 2000; Park et al., 2011). Work

in this area has been most extensive for dopamine, and although

recent results support the idea that dopamine can act through

volume transmission, the presence of dopamine at levels suffi-

cient to activate its receptors likely only occurs over a micron

away from an active zone during synchronous release from mul-

tiple nearby active zones (Beyene et al., 2019; Jan et al., 1979;

Liu et al., 2021). Estimates of neuropeptide diffusion based on

photo uncaging suggest potentially longer-range diffusion (Ban-

ghart and Sabatini, 2012). Further studies using recently devel-
oped neuromodulator sensors will more precisely clarify these

dynamics, which may be critical to internal state control.

Neuromodulators stably alter neuronal excitability to
control persistent internal states
In addition to slow diffusion of the ligand, the long timescale ac-

tion of neuromodulators is also thought to be due the fact that

amines and neuropeptides primarily act through metabotropic

receptors, which activate biochemical signaling pathways that

remain active after receptor activation (Figures 5B and 5C).

The activation of these pathways can modulate cellular excit-

ability and a variety of other cellular processes. As described

above, the effects of metabotropic signaling on neuronal

activity have perhaps been best characterized in the stomato-

gastric ganglia of crustaceans, where metabotropic pathways

converge onto a number of different currents to modulate

neuronal excitability. However, classical neurotransmitters can

also act through metabotropic receptors, for example,

mGluRs, and neuromodulators can sometimes act via iono-

tropic receptors (Ringstad et al., 2009; Thompson and Lummis,

2006); hence, this feature does not fully distinguish the

neuromodulatory systems from other neurotransmitters.
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ll
Review

Please cite this article in press as: Flavell et al., The emergence and influence of internal states, Neuron (2022), https://doi.org/10.1016/
j.neuron.2022.04.030
Nevertheless, neuromodulator-dependent activation of metab-

otropic signaling has been directly linked to the generation of

internal states.

Related to persistent internal states, neuromodulator-induced

activation of metabotropic signaling is known to regulate persis-

tent neural activity in many systems. For example, in the pres-

ence of a muscarinic agonist, current injection into mammalian

layer V entorhinal neurons elicits a remarkably stable increase

in firing rate that can occur in a graded manner (Egorov et al.,

2002). In the presence of serotonin, spinal motoneurons display

bistable activity (Hounsgaard and Kiehn, 1989). In Drosophila,

dopamine acting through the Dop1R2 receptor and downstream

potassium channels can stably alter the excitability of the dorsal

fan-shaped body neurons to control sleep (Pimentel et al., 2016).

In the striatum, dopamine persistently elevates the excitability of

D1 receptor-expressing striatal projection neurons (Lahiri and

Bevan, 2020). Indeed, metabotropic regulation of firing modes

appears to be a common property of neurons (Derjean et al.,

2003). In vivo electrophysiological studies of thalamic and

cortical contributions to arousal states also support a role for

neuromodulatory systems in eliciting stable activity (McCormick,

1992; McCormick and Prince, 1986; Pape and McCormick,

1989; Steriade et al., 1993). Behavioral state-correlated activa-

tion of cholinergic and noradrenergic axons in cortex is associ-

ated with sustained depolarizations in pyramidal cells (Goard

and Dan, 2009; Meir et al., 2018; Pinto et al., 2013; Polack

et al., 2013). Overall, these studies provide evidence that neuro-

modulatory control of persistent neural activity contributes to the

generation of internal states.

Neuromodulators stably alter biochemical signaling to
control persistent internal states
Studies linking neuromodulator-induced biochemical signaling

to internal states have been most extensive for the cAMP-

PKA pathway. Fluorescent sensors of cAMP levels and PKA

activation have revealed persistent increases in cAMP levels

and downstream signaling with kinetics on the order of tens

of seconds to minutes in freely moving flies (Thornquist et al.,

2021) and mice (Lee et al., 2019; Zhang et al., 2021). These ki-

netics have been tied to internal state generation in several or-

ganisms.

One example is the set of Corazonin neurons in Drosophila, a

small group of neurons controlling the animal’s drive to copulate.

Graded accumulation of cAMP in these neurons over minutes

during successive activity bouts can trigger a synchronous burst

of network activity, or eruption, that changes the motivational

state of the fly such that its copulation drive is reduced (Thorn-

quist et al., 2021). Optogenetic elevation of cAMP levels in Cor-

azonin neurons can elicit this state transition. Another example is

from the zebrafish brainstem, where stable accumulation of ev-

idence also occurs downstream of alpha-1B adrenergic recep-

tors in radial glia, where noradrenaline release during successive

futile actions stably increases glial calcium levels to elicit a tran-

sition to a passive behavioral state (Mu et al., 2019). Long-lasting

activation of astrocytic signaling in mammalian circuits has also

been linked to stable states of neural activity (Deemyad et al.,

2018), suggesting that this may be a recurring mechanism for

stable accumulation of persistent activity. Finally, a recent study
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of mating drive in male mice showed that stable increases in

cAMP occur in MPOA neurons after transient hypothalamic

dopamine release activated by a social encounter with a female

(Zhang et al., 2021). This then triggers a stable state ofmotivation

to mate, whose kinetics match cAMP kinetics in MPOA neurons.

Together, these studies highlight how the timescale of biochem-

ical signaling is closely linked to the persistence of internal

states.

Other stable neuronal signaling pathways also contribute to

behavioral state generation. Activation of the calcium-dependent

protein kinase CaMKII in Drosophila Corazonin neurons delays a

motivational state change that terminates copulation until 5–7min

after copulation begins (Thornquist et al., 2020). Interestingly,

previous work has shown that CaMKII activation initially requires

elevated calcium levels, but the activation of the 12-subunit

CaMKII holoenzyme can be sustained in a calcium-independent

manner through autophosphorylation of adjacent subunits, allow-

ing for stable, minutes-long activation of the enzyme (Lisman

et al., 2012; Miller and Kennedy, 1986). Sustained activation of

CaMKII in Corazonin neurons detected through fluorescent

reporter imaging was shown to have a causal effect on the timing

of the motivational state transition of the fly. This work demon-

strates how stable biochemical pathways within neurons can in-

fluence network activity and internal states.

Gene expression changes across internal states
Although stable, activity-induced changes in gene expression

are essential for lasting behavioral changes during long-term

memory and circadian timing (Dubowy and Sehgal, 2017; Yap

and Greenberg, 2018), the role of dynamic gene expression in

persistent internal states is less well studied. However, changes

in gene expression have been notably detected across feeding

states. For example, feeding state-dependent changes in neuro-

modulator (Entchev et al., 2015) and chemoreceptor (Sengupta,

2013) expression in C. elegans have been linked to satiety-

related behavioral changes. Similarly, food deprivation alters

the expression of hundreds of genes in AGRP neurons of the hy-

pothalamus (Henry et al., 2015). Gene expression changes in LH

are even associated with the onset of obesity over days (Rossi

et al., 2019).

Gene expression changes have also been linked to other moti-

vational drives, for example, the drive to copulate in Drosophila.

Abstinence from copulation elicits an increase in activation of the

neural activity-dependent transcription factor cAMP response

element-binding protein (CREB) in a group of neurons that

form a recurrent loop (Zhang et al., 2019). The stable expression

of a CREB-induced potassium channel then influences mating

behavior for hours to days after animals have mated and CREB

activation has subsided. Given that activity-dependent tran-

scription is a ubiquitous feature of neuronal gene expression

and that it can reflect historical patterns of neural activity in a sur-

prisingly precisemanner (Brigidi et al., 2019), it may play a similar

role in the control of other drive states. Given that these activity-

dependent pathways are also known to regulate structural plas-

ticity, future work may be aimed at examining whether internal

states are accompanied by structural changes in neural circuits.

Overall, the links between neuromodulator-induced biochemical

signaling and internal state generation are now becoming
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apparent, but our understanding of this relationship is still in its

infancy.

EMERGING THEMES OF INTERNAL STATE CONTROL
ACROSS SPECIES

Despite substantial variability among internal states within an or-

ganism and across different organisms, there exists a striking

commonality in how some of these states are organized in the

brain. Indeed, recent studies have identified several examples of

common neural mechanisms that contribute to internal state

control.

Theme 1: Internal states influence multiple circuits and
cell types in parallel
Although the predominant viewof internal states favors a ‘‘hub and

spoke’’ type of ‘‘fan-out’’ mechanism (highlighted above), there is

evidence for thecontrol of internal states inamoredistributed,par-

allel action manner. Here, we highlight a few key examples.

Above, we highlighted how neuromodulators can act locally

within a given brain region to exert control over behavior. How-

ever, there is growing evidence that neuromodulators can exert

their state-like control over behavior in a distributed manner

across numerous brain regions simultaneously. For example,

Zelikowsky and colleagues identified a role for the neuropeptide

tachykinin 2 (Tac2) in the control of an internal brain state pro-

duced by prolonged social isolation stress (Zelikowsky et al.,

2018). Using a multiplex approach employing a variety of loss-

of-function techniques and testing multiple behaviors, the au-

thors discovered that Tac2 signaling is necessary and sufficient

for the effects of social isolation to produce enhanced aggres-

sion, persistent fear, and acute fear responses. Importantly,

the authors found that each isolation-altered behavior was inde-

pendently controlled by Tac2 signaling in distinct brain regions

This ‘‘web-like’’ distributed, local circuit organization has also

been shown to control additional states and systems.

One prominent example is the role of the neuropeptide PDF in

the control of circadian rhythms. Indeed, PDF has been shown to

coordinate the phase and amplitude of circadian rhythms

through its action on separate populations of cells across the

fly brain (Lin et al., 2004). Importantly, PDF operates in a distrib-

utedmanner across the fly brain, providing unified and organized

control over circadian rhythms in flies despite the unique effects

that PDF exerts in a region-specific manner (Taghert and Nita-

bach, 2012). Local, distributed neuromodulation has also been

recently studied in the context of rodent fear behavior, where dis-

inhibitory interneurons in several neocortical regions have been

found to be excited by local and afferent sources of the neuro-

peptide gastrin-releasing peptide (GRP) (Melzer et al., 2021). In

the auditory cortex, GRP receptor signaling facilitates auditory

fear conditioning, and the role of GRP signaling in other regions

remains to be investigated.

Collectively, these studies highlight the potential biological

benefit of a dispersed internal state, wherein separate behaviors

can be controlled via distinct brain regions yet remain in concert

with each other through overarching control by a single neuro-

peptide system. Although it is highly likely that in such examples

additional signaling molecules are coreleased along with these
neuropeptides (see theme 2 below), the ability of a single neuro-

peptide to exert large-scale effects across the brain and

behavior is nevertheless striking.

Recent work has also shown that single neuromodulators are

capable of controlling distinct internal states in different con-

texts. For example, although Tac2 has been implicated in the

control of the state produced by prolonged social isolation (see

above), work by Andero and colleagues has also identified a

role for Tac2 signaling in the CeA in the fear state produced by

exposure to footshock (Andero et al., 2014, 2016). Similarly,

although PDF has been implicated in the regulation of circadian

rhythms (see above), additional work by Flavell and colleagues

using genetic screens, quantitative behavioral analyses, and op-

togenetics also identified a role for PDF in the control of roaming

behavior in worms (Flavell et al., 2013). This pattern of neuropep-

tidergic ‘‘multipurposing’’ can be found in the identification of

oxytocin in pair-wise bonding (Donaldson and Young, 2008;

Froemke and Young, 2021; Insel and Young, 2001) but also

maternal behavior (Marlin et al., 2015), fear (Pisansky et al.,

2017), and other states. Finally, in a series of seminal studies,

Galanin+ neurons in the MPOA were identified in the control of

parental behavior in both males and females (Kohl et al., 2018;

Kohl and Dulac, 2018; Wu et al., 2014), whereas Galanin+ neu-

rons in the ventrolateral preotic area have been found to promote

sleep and heat loss (Kroeger et al., 2018).

Overall, these examples highlight diversity in function and in-

ternal state control for single neuropeptides operating across

the brain to control a single state, as well as the ability of a single

neuropeptide to be ‘‘repurposed’’ to serve in the formation of

multiple internal states. This diversity can range across brain re-

gions and even species. Importantly, although it is tempting to

assign one-to-one pairings between individual neuromodulators

and internal states, this appears to be an oversimplification. In

particular, neuromodulatory repurposing further reinforces the

notion that neuromodulators—with their physiological proper-

ties, brain-wide networks, region specificity, and slow-release,

persistent signaling properties—are ideal candidates for the

control of internal states and their effects on behavior.

Theme 2: Neuromodulators act in concert
Manyof thestudiesdiscussed in this reviewhighlight the functional

roleof individual cell typesandneuromodulatory transmitters, sug-

gesting that each of these neuromodulatory systems plays a

unique role inwhatever stateorbehaviorwasexamined. This is un-

likely tobe thecase.Oneof themost salient lessons from the study

of small invertebrate circuits is that neurons and synapses are

modulated by multiple substances (Getting, 1989; Harris-Warrick

and Marder, 1991; Marder, 2012), and their interactions produce

emergent effects that are not easily predicted from the actions of

onemodulator alone (Flamm et al., 1987; Hempel et al., 1996; Kin-

tos et al., 2016; Swensen and Marder, 2000, 2001).

Why this discrepancy between the small-circuit literature and

more recent studies of neuromodulatory systems? A possible

reason may be the bias of common laboratory techniques. Mod-

ern studies of neuromodulation often use genetic model sys-

tems, such as those discussed extensively here (worms, flies,

fish, and mice), whose power comes from the specificity they

afford: the ability to study a single genetically or anatomically
Neuron 110, August 17, 2022 13
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Figure 6. Opposing brain states engage mutually exclusive neural populations
(A) Roaming and dwelling states in C. elegans are supported by opposing sets of neurons that mutually inhibit each other (Ji et al., 2021).
(B) Separate brain-wide populations regulate roaming versus dwelling states in hunting larval zebrafish (Marques et al., 2020).
(C) Exploration versus anxiety engage different populations of neurons in the mouse amygdala (Gr€undemann et al., 2019).
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defined cell type or analyze the actions of specific transmitters

and receptors (Luo et al., 2018; Sabatini and Tian, 2020). In

contrast, classical studies in small invertebrate circuits primarily

used bath-applied neuromodulatory transmitters and hormones,

allowing for the study of multiple transmitter actions.

We have reason to believe, however, that an accounting for

ubiquitous comodulation will becomemore prominent in genetic

model systems as well. For instance, in rodents, single-cell RNA

sequencing has emphasized the fact that each cell expresses a

large number of neuromodulatory receptors (Campbell et al.,

2017; Henry et al., 2015; Kim et al., 2019; Moffitt et al., 2018; Sa-

unders et al., 2018; Smith et al., 2019), and viral strategies allow

investigators to control multiple independent cell types in the

same animal (Luo et al., 2018). Furthermore, recent studies

combining live functional imaging with post hoc registration to

multiple gene expression markers (Bugeon et al., 2021; Lovett-

Barron et al., 2017, 2020; von Buchholtz et al., 2021; Xu et al.,

2020) provides the opportunity to image multiple genetically

defined cell types at once. In larval zebrafish, this approach

has demonstrated that multiple neuromodulatory cell types are

coactive during states of heightened alertness (Lovett-Barron

et al., 2017), and many hypothalamic neuropeptide-producing

cell types are coactive across various homeostatic threats

(Lovett-Barron et al., 2020).

We believe that an appreciation of comodulation will move the

field away from the perspective of studying neural circuits as

‘‘labeled lines’’—an approach so useful in the understanding of

sensory systems and reflexes—and toward an understanding

of modulated circuits as an emergent state produced bymultiple

interacting neuromodulatory effects (Getting, 1989; Harris-War-

rick and Marder, 1991; Marder, 2012).

Theme 3: State transitions engage mutually exclusive
neural populations
One common mechanism in the neural encoding of global brain

states is the switching between largely mutually exclusive popu-

lations of neurons that encode opposing states. This is observed
14 Neuron 110, August 17, 2022
across species and brain states, including well-studied exam-

ples of sleep-state switching in mammals (Saper et al., 2010;

Weber and Dan, 2016), zebrafish (Oikonomou and Prober,

2017), and invertebrates (Shafer and Keene, 2021) as well as

mutually exclusive populations of neurons encoding hunger

states in the zebrafish hypothalamus (Wee et al., 2019b) and

distinct populations that encode separable internal states of so-

cial engagement in the mouse (Karigo et al., 2021).

The distinction between roaming and dwelling has been

studied across species, where distinct neural populations pro-

duce these opposing states: exploration of large spaces in

search of resources (‘‘roaming’’) versus exploiting local re-

sources by staying in place (‘‘dwelling’’). In freely moving

C. elegans, the roaming-inducing neuropeptide PDF and dwell-

ing-inducing monoamine serotonin (Flavell et al., 2013) recruit

distinct populations of neurons that are active in a mutually

exclusive manner to promote each behavior (Ji et al., 2021;

Figure 6A). Of note, the neurons that generate these opposing

neuromodulators mutually inhibit one another to generate this

two-state system. Similarly, brain-wide imaging in freely swim-

ming zebrafish larvae (Kim et al., 2017b) also revealed a pattern

of mutually exclusive populations across the midbrain, dien-

cephalon, and brainstem that encode long-lasting roaming

and dwelling states during hunting behavior, as well as neurons

that signal the transition from roaming/exploration to dwelling/

feeding (Marques et al., 2020; Figure 6B). As in C. elegans,

serotonergic neurons were implicated in initiating dwelling

states. Finally, population imaging in the mouse amygdala re-

vealed that across behavioral contexts, mutually exclusive pop-

ulations of neurons encode general states of roaming-like

exploratory movement and dwelling-like defensive behaviors

(Gr€undemann et al., 2019; Figure 6C).

Together, these studies indicate that mutually exclusive inter-

nal states can be encoded in the opposing activity of neuronal

populations. However, these ‘‘flip-flop’’ dynamics may not

generalize to internal states that exhibit continuous variation or

interactions with other states that are not mutually exclusive.
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Figure 7. Multiple mechanisms can support
the persistence of internal states
(A) Schematics of persistent neural and behavioral
responses to transient sensory stimuli.
(B) One potential mechanism for generating
neuronal persistence is slowly evolving biochemical
signaling within neurons, which has been demon-
strated to control the persistence of internal states in
flies and mammals (Zhang et al., 2019, 2021;
Thornquist et al., 2021).
(C) Another potential mechanism is recurrent exci-
tation among interconnected neurons, as has been
recently demonstrated to maintain persistent
defensive behaviors in flies and rodents (Jung et al.,
2020; Kennedy et al., 2020).
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The population dynamics and switching mechanisms underlying

these states are not yet well explored.

Theme 4: State persistence through recurrent dynamics
It has long been recognized that neural circuits with recurrent

excitation might be able to generate stable neural responses to

transient inputs (Joshua and Lisberger, 2015). For example, tran-

sient motor signals that move the position of the eye are received

by a recurrently connected neural integrator circuit whose activ-

ity is persistently altered to maintain the position of the eye

(Aksay et al., 2007; Miri et al., 2011). Recent work has now high-

lighted the importance of recurrent excitation for the generation

of persistent internal states.

Studies of a neural circuit that controls behavioral states in fe-

male Drosophila provide new evidence that recurrent excitation

is important for the generation of internal states. Activation of

pC1 neurons in female flies elicits increased female receptivity

to males and increased shoving and chasing, even several mi-

nutes after the optogenetic stimulus has terminated (Deutsch

et al., 2020). Distinct subsets of pC1 neurons control female

receptivity versus shoving and chasing behaviors. Interestingly,

a brain-wide imaging approach revealed that activation of the

pC1d/e neurons that control shoving and chasing induced

persistent activity in many downstream brain regions, in addition

to pC1 neurons themselves. A connectomic analysis showed

that pC1 neurons are part of a recurrently connected neural cir-

cuit, with prominent reciprocal connections to aIPg-b and aIPg-c

cells, which are also interconnected with one another. As all of

these cell types are excitatory (Schretter et al., 2020), this sug-

gests that pC1 is a functionally important node in a recurrently

connected circuit that elicits a persistent behavioral state.

In male Drosophila, activation of a stable, recurrently active

circuit also underlies behavioral state generation. Activation of
the P1 interneurons elicits a minutes-long

internal state that consists of elevated

courtship and aggression (Clowney et al.,

2015; Hoopfer et al., 2015). Although P1

neurons are not persistently active during

this state, a group of downstream neurons,

named pCD neurons, exhibit long-lasting

activation during this internal state

(Figure 7A; Jung et al., 2020). Activity in

these neurons is required for stable behav-
ioral changes during the P1-induced state and transient inactiva-

tion of pCD neurons attenuates their persistent neural response

to P1 activation, providing evidence that continued pCD activity

supports its own persistence. Transient inactivation of pCD neu-

rons also suppresses persistent aggressive behavior elicited by

recent exposure to a female fly. This study highlights how neural

circuits with recurrent excitation can maintain a persistent inter-

nal state.

Studies in mammals have also implicated recurrent connec-

tivity in the control of internal states. Activation of VMHdmSF1

neurons in the VMH can elicit a state of fear or anxiety (Kun-

war et al., 2015). As a group, the VMHdmSF1 neurons show

persistent activation in response to social sensory cues that

can evoke an anxiety state (Kennedy et al., 2020). However,

the dynamics of the neurons within this population vary, with

some neurons displaying immediate onset activation and

others ramping slowly. Moreover, neurons in the population

respond differently to different social cues. Several computa-

tional models were constructed to determine whether they

could recapitulate features of the population activity. Interest-

ingly, only the models that included recurrent connectivity and

neuromodulation were able to do so, suggesting that recurrent

connectivity and neuromodulation may co-occur in this circuit

to support stable population dynamics (Figure 7B). It is worth

noting that there is an additional similarity between P1 inter-

neurons and VMH neurons, which is that they can both induce

different behavioral states in different sensory contexts. This

specific topic has been reviewed previously in Ander-

son (2016).

Although we note examples here of state persistence driven

by recurrent circuits, persistence can also be achieved by neuro-

modulatory control of cellular excitability (as discussed above). It

is not well understood whether these mechanisms are
Neuron 110, August 17, 2022 15
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interdependent or used in different cases to achieve similar out-

comes depending on the contexts, circuits, or timescales

involved.

CONCLUSIONS

In this review, we have discussed our current understanding

of internal states: how they are defined, measured, generated

by neurons, as well as how they affect the brain and behavior.

Building upon the insights from many other authoritative re-

views about internal states (Anderson, 2016; Bargmann,

2012; Bargmann and Marder, 2013; Getting, 1989, etc.; Lee

and Dan, 2012; Marder, 2012; McCormick et al., 2020; McGin-

ley et al., 2015a; Taghert and Nitabach, 2012; Tye, 2018, etc.),

here, we have emphasized advances in the classification of in-

ternal states, the insights from studying brain-wide popula-

tions, and some of the many biological mechanisms through

which neuromodulators can influence states. Importantly, we

have emphasized common principles found across model

species.

Although the field has made enormous progress, many funda-

mental questions about internal states and their neural basis

remain unanswered or completely unexplored. How do sensori-

motor circuits integrate state-relevant information to drive adap-

tive behavioral responses? To what extent do neuromodulators

have unique versus redundant effects? Are brain-wide dynamics

required for the expression of states or just a consequence of a

massively interconnected brain?Why are some states controlled

by a handful of neurons, whereas others are controlled by neu-

rons distributed across multiple brain regions?

As the field resolves these mechanistic questions, it may be

important to reflect on the challenges of defining internal states.

How do different co-occurring states interact with each other,

and would it be more useful in certain instances to simply refer

to the animal’s overall state? Can states always be inferred

from behavior and/or physiology? When do measurements of

the brain, behavior, and physiology reflect the same underlying

state and when do they reveal unexpected distinctions? Is there

a true distinction between motor actions, sequences of motor

actions, and states, or does behavior simply unfold along a con-

tinuum of timescales? Can behavior in natural environments be

adaptive in the absence of long timescale state organization?

One key issue regarding the definition of internal states is their

degree of independence. How dowe know that fear represents a

unique internal state, distinct from others such as anxiety? Is the

ability to distinguish such states dependent on the tools we use

for measuring their observable output? Would we be able to

further splinter internal states into smaller substates if we had

better tools? How does selection of model organism affect our

ability to isolate and define an internal state? Given the wide vari-

ability in model organisms as well as experimental approaches,

would we benefit from a definition of internal states as they

pertain to biological relevance and their importance to survival?

These questions and more can be addressed using the

emerging methodological approaches discussed herein,

including more rigorous quantification of states using integrated

datasets andML approaches, precise observation and control of

electrical and biochemical activity across entire nervous sys-
16 Neuron 110, August 17, 2022
tems, and better theoretical frameworks understanding the utility

of internal states.

As with any search for common principles in biology, this field

of neuroscience will benefit greatly from studying an expanded

set of animal species, challenging animals with more natural

and varied behavioral conditions, and welcoming scientists to

approach these questions with diverse views, expertise, and ex-

periences.
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