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Spectral mode representations play an essential role in various areas of physics, from quantum
mechanics to fluid turbulence, but they are not yet extensively used to characterize and describe the
behavioral dynamics of living systems. Here, we show that mode-based linear models inferred from
experimental live-imaging data can provide an accurate low-dimensional description of undulatory
locomotion in worms, robots, and snakes. By incorporating physical symmetries and known biolog-
ical constraints into the dynamical model, we find that the shape dynamics are generically governed
by Schrödinger equations in mode space. Similar to quantum systems, the eigenstates of the bio-
physical Hamiltonians enable the efficient classification and differentiation of locomotion behaviors
in natural, simulated, and robotic organisms. While our analysis focuses on a widely studied class of
biophysical locomotion phenomena, the underlying approach generalizes to other physical or living
systems that permit a mode representation subject to geometric shape constraints.

Undulatory propulsion is the natural locomotion strat-
egy [1, 2] of many aquatic and terrestrial animals,
from worms [3–7] and fish [8, 9] to lizards [10] and
snakes [11, 12]. The mechanical wave patterns that
drive undulatory motion reflect an animal’s behavioral
state [13], providing a macroscopic physical readout of
the underlying biochemical and neuronal excitations. Re-
cent advances in automated live-imaging [14, 15] enable
simultaneous observations of macroscopic locomotion dy-
namics and microscopic cellular activity [16–21], produc-
ing rapidly growing multi-scale data sets [22] that have to
be tracked [23–25] and translated into predictive and in-
terpretable models. Despite recent major progress in the
experimental characterization [16–20] and biophysical de-
scription of specific organisms [4, 10, 26–32], a quan-
titative model inference framework for comparing ex-
perimentally observed undulatory dynamics within and
across species has yet to be developed. In addition to
providing unifying biophysical insights spanning different
animal kingdoms, such a framework would also allow for
a direct comparison of living systems with computational
models [33, 34] and biomimetic robotic devices [35, 36].

Here, we use spectral mode representations to iden-
tify symmetry-constrained dynamical models that can
capture and distinguish the undulatory locomotion of
worms (Caenorhabditis elegans) [13], neuro-mechanical
worm models [33], Mojave shovel-nosed snakes (Chion-
actis occipitalis) [37], and mechanical snakes. Compared
with traditional continuum descriptions of undulatory
shape-deformations in position space, formulating loco-
motion models in mode space [38–41] offers several the-
oretical and practical advantages: (i) high-dimensional
experimental data can be efficiently compressed to ob-
tain an interpretable low-dimensional representation; (ii)
the mode dynamics reduces to a system of linear ordi-

nary differential equations (ODEs); (iii) physical symme-
tries and biological constraints can be efficiently encoded
through the structure of the dynamical matrix; (iv) all
model parameters can be directly inferred from experi-
mental data using ODE sensitivity methods [42, 43] that
exploit the imposed matrix structure [44]. In particu-
lar, for undulatory locomotion, we find that translational
invariance, rotational invariance, and length constraints
generically lead to a Schrödinger equation [45] in mode
space. Analogous to the characterization of quantum sys-
tems in terms of their spectra and eigenstates [46], the
eigenspaces of the effective Hamiltonians enable an effi-
cient classification of the locomotion dynamics of worms,
snakes, robots, and computational models. While our
discussion focuses on an important subclass of biophys-
ical dynamics, the underlying approach generalizes to
other physical or living systems that permit a mode rep-
resentation while being subject to exact or approximate
geometric constraints.

The planar undulatory locomotion of an elongated
worm-like object can be described by its centerline
(x(s, t), y(s, t)), where s is the arc length and t denotes
time [Fig. 1(a) and (b)]. While tens to hundreds of
points are typically required for an accurate depiction of
an organism’s shape in position space [16], interpretable
lower-dimensional representations can often be obtained
by projecting on suitable polynomial, trigonometric, or
other basis functions [26, 47]. Although system-specific
representations, such as PCA-based eigenworms [26, 31],
yield near-optimal compression, general orthogonal ba-
sis systems enable direct comparisons across systems,
which is the main objective of our study. Here, we
use Chebyshev polynomials [48] of the first kind, Tk(s),
which are known to have advantageous analytical and
computational properties; in principle other bases can
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FIG. 1. Chebyshev mode representation enables an efficient and interpretable low-dimensional description of undulatory
locomotion across species and model systems. (a) Experimental image of C. elegans worm with center of mass (COM) and
mean orientation overlayed. (b) Tracked centerline of worm over 100 seconds. Arrow indicates direction of motion. (c) A
small number of Chebyshev polynomials suffices to accurately reconstruct the worm shape (left). Reconstruction error (right)
decays rapidly as the Chebyshev degree n increases. (d) The zeroth-order Chebyshev coefficients follow closely the worm’s
geometric COM, illustrating the physical interpretability of Chebyshev mode representation. (e) Similarly, the first-order
Chebyshev coefficients represent the tail-to-head worm orientation. (f) The mode-averaged dominant frequency of Chebyshev
mode oscillations correlates closely with the locomotion speed of worm.

be used as well. The dynamics of the two scalar fields
(x(s, t), y(s, t)) can then be represented in terms of their
leading Chebyshev coefficients, x̂k(t) and ŷk(t), up to de-
gree n defined by[

x(s, t)
y(s, t)

]
=

n∑
k=0

Tk(s)

[
x̂k(t)
ŷk(t)

]
. (1)

For the experimental imaging data analyzed below,
n+ 1 = 10 modes suffice for achieving reconstruction er-
rors less than 1% [Fig. 1(c); SI 2]. To calculate the kth
coefficient, we take the inner product with respect to the
Chebyshev weight function w(s) = 1/

√
1− s2,[

x̂k(t)
ŷk(t)

]
=
γn
π

∫ 1

−1

ds w(s) Tk(s)

[
x(s, t)
y(s, t)

]
(2)

where γ0 = 1 and γn = 2 for n > 0. We illustrate
the physical meaning of the Chebyshev modes using
recent tracking microscopy video data [16] for C. ele-
gans [Fig. 1(a) and (b)], a widely studied model organ-
ism with 95 body wall muscle cells, 302 neurons, and a
rich set of behavioral states and corresponding locomo-
tion patterns [13]. The degree-0 coefficients [x̂0(t), ŷ0(t)],
obtained from Eq. (2) with T0(s) = 1, describe the w-
weighted Chebyshev center of mass (CCOM) of the mov-
ing worm, which follows closely the geometric center of
mass [Fig. 1(d)]. The degree-1 coefficient vector with

T1(s) = s represents the mean orientation of the worm
[Fig. 1(e), SI]. Similarly, the Chebyshev vectors [x̂k, ŷk]
with k ≥ 2 encode curvature and higher deformation
modes [Fig. 1(c), inset]. The average dominant frequency
across the mode oscillations closely matches the speed of
the worm in real space [Fig. 1(f); SI 1].

Equipped with this representation, we seek to for-
mulate a dynamical model for undulatory motion in
mode space. Defining a combined mode vector Ψ =
[x̂0, . . . , x̂n, ŷ0, . . . , ŷn], the most general coupled lin-
ear first-order dynamics is Ψ̇ = MΨ. Incorporat-
ing symmetries and invariances into the model im-
poses additional structure on M . Rotational in-
variance constrains M to have a block form with
equal diagonal blocks and opposite sign off-diagonal
blocks (SI). Translational invariance requires the CCOM
ψ0 = [x̂0, ŷ0] to decouple from the higher degree coef-
ficients ψ̂ = [ψ̂x, ψ̂y] = [x̂1, . . . , x̂n, ŷ1, . . . , ŷn] that de-
scribe the orientation and shape. Abbreviating xs =
∂x/∂s, an additional biophysical constraint for un-
dulatory motion is that the length of the centerline

`(t) =
∫ 1

−1
ds
√

(xs(s, t))2 + (ys(s, t))2, remains approxi-
mately constant (SI). In mode space, length variations
can be bounded by conserving the convex quadratic func-
tional

˜̀2 =

∫ 1

−1

ds
[
xs(s, t)

2 + ys(s, t)
2
]

= ψ̂†
[
W 0
0 W

]
ψ̂ (3)
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FIG. 2. Inferred Schrödinger dynamics replicate stereotypical C. elegans locomotion. (a) Representative propulsion vector h1

and Hamiltonian sub-matrix iH1, see Eq. (4). (b) Kymopgraphs of x(s, t) and y(s, t) coordinate fields for observed data (left)
and model prediction (middle) show little deviation (right), confirming that the Schrödinger model [Eq. (4)] can accurately
capture undulatory shape dynamics of C. elegans. (c) Real-space dynamics predicted by the Schrödinger model (line) is
consistent with the observed worm dynamics (circles); see Movie S1. Model has been fitted on a single period (τ = 3.05s);
experimental data has been periodically extended for visualization to avoid overlapping body segments. (d) Real-space shape
functions [Eq. (5)] corresponding to the three smallest magnitude eigenvalues, λ±

k = ±kλ for k = 0, 1, 2, account for > 98% of
the shape dynamics, enabling a generalizable low-rank description.

where W is a symmetric matrix with elements Wk,m =∫ 1

−1
ds ∂sTk(s) ∂sTm(s). In particular, W is positive defi-

nite and can thus be interpreted as a basis-specific metric.
Taylor expanding the curve length ` around the space-
and time-average of x2

s and y2
s , denoted by 〈·〉, shows that

` is approximately proportional to ˜̀2/
√
〈x2
s + y2

s〉; addi-

tionally, the Cauchy-Schwarz inequality implies `2 ≤ 2˜̀2

(SI). Therefore, demanding constant ˜̀ ensures ` remains
approximately constant and bounded, as desired. Keep-
ing Eq. (3) constant forces the shape-modes ψ̂ onto a
hyperellipsoid, with axes determined by W . Using the
Cholesky factorization W = LL†, this hyperellipsoid can
be transformed to a unit hypersphere by defining the
rescaled mode vectors ψx = (L†/˜̀)ψ̂x, ψy = (L†/˜̀)ψ̂y,
and ψ = [ψx,ψy]. Under this transformation, the length
constraint (3) becomes a normalization condition

ψ†ψ = 1. (4a)

Combined with rotational and translational invariance,
the normalization restricts the class of permissible linear
models to the form (SI)

ψ̇0 = H0ψ (4b)

iψ̇ = Hψ, (4c)

where H0 and H have the structure

H0 =

[
h†1 h†2
−h†2 h†1

]
, H =

[
H1 H2

−H2 H1

]
(4d)

and iH is real skew-symmetric so H is Hermitian and has
real eigenvalues. Equation (4b) describes how the CCOM
dynamics couples to the body oscillations through H0.
Equation (4c), which governs the shape dynamics, is

mathematically equivalent to a Schrödinger equation
with Hamiltonian H [45]. For straight motion, one does
not expect the x- and y-modes to couple significantly,
so we may set h2 = 0 and H2 = 0 in this case. To con-
firm that Eqs. (4) can indeed describe and distinguish
the undulatory dynamics of C. elegans worms [16] and
other systems, we implemented a inference framework
for estimating the propulsion vector h1 and the shape
Hamiltonian H1 from experimental data (Fig. 2 and 3).

Both h1 and H1 can be efficiently determined from
tracked centerlines via a physics-informed dynamic mode
decomposition [49, 50] that exploits matrix structure [44].
Since iH1 is real skew-symmetric, it permits the spectral
decomposition iH1 = QΣQ†, whereQ is a real orthogonal
matrix and Σ is a real block diagonal matrix. This leaves
bn2/2c parameters in Σ and Q plus n in h1 to be deter-
mined from data. The number of parameters can be re-
duced further by constraining the spectrum of H1 to take
integer multiples of the base frequency λ = 2π/τ , where
τ is the dominant oscillation period. We found that esti-
mating τ directly from the Fourier spectrum (SI) yields
periodic oscillatory dynamics consistent with experimen-
tally observed straight motion. To infer the remaining
parameters (Q,h1) and to avoid numerical differentia-
tion of noisy data, our inference scheme compares nu-
merically integrated predictions from Eqs. (4) directly to
the experimental data (SI). The underlying algorithm se-
quentially optimizes Q and h1 by minimizing deviations
from both real space worm shapes and mode space tra-
jectories, to balance shape matching with model gener-
alizability, and to prevent overfitting (SI). Minimization
is performed using gradient-based optimization [51–53]
with forward mode automatic differentiation through the
ODE solver [41–43]. Overall, this scheme makes it possi-
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FIG. 3. Mode-space Hamiltonians provide a compact dynamical description of undulatory motion across different species
and model systems. (a) Living and nonliving systems [33, 37] analyzed here and representative instantaneous Hamiltonians
inferred from a single oscillation period. The eigenspaces of the Hamiltonians enable the comparison and classification of
undulation dynamics, see Fig. 4. Scale bars are 0.25 mm (worm), 0.25 mm (worm model), 10 cm (toy snake), and 10 cm
(snake). (b) Inferred Schrödinger model dynamics (line) provide an accurate description of the observed dynamics (circles).
Models were fitted on a single period τ = 3.1 s (worm), 2.2 s (worm model), 0.45 s (toy snake), and 0.33 s (snake); see also
Movie S1. Experimental data has been periodically extended for visualization to avoid overlapping body segments. (c) The
dominant shape eigenvectors v1(s) and w1(s) are consistent within each species and capture differences between species.

ble to infer the instantaneous shape Hamiltonian H1 and
the propulsion vector h1 from just a single oscillation
period. For C. elegans (Fig. 2) as well as for previously
proposed neuro-mechanical worm models [33], C. occip-
italis snakes [37] and snake robots (Fig. 3), the best-fit
models based on Eqs. (4) accurately capture the undula-
tory dynamics (Movie S1).

Since the shape dynamics are encoded by the Hamilto-
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FIG. 4. Pairwise Grassmann distances between subspaces
spanned by first excited eigenstates of the Hamiltonians and a
corresponding phase diagram obtained by a multidimensional
scaling (MDS) embedding capture the similarities and dif-
ferences between undulatory locomotion in organisms, model
simulations, and robots.

nian H, we can use its eigenstates to compare and classify
undulatory motion across species and systems [46]. In-
deed, for straight motions, it suffices to study the eigen-
states of H1. Considering n = 9 as before, H1 has
one zero eigenvalue λ0 = 0 corresponding to the zero-
mode eigenvector φ0, and 4 distinct pairs of opposite
sign eigenvalues λ±k≥1 = ±kλ with a set of complex con-

jugate eigenvectors φ±k , where φ+
k = (φ−k )∗. We define

two real orthogonal mode space vectors vk = <(φ+
k ) and

wk = =(φ+
k ) that span the eigenspace of φ±k . The real

space shape functions corresponding to the real mode
space vectors are

vk(s) = `(L−1T(s))†vk, wk(s) = `(L−1T(s))†wk,
(5)

where T(s) = [T1(s), T2(s), . . . , Tn(s)] is a vector of
Chebyshev functions. Time varying linear combinations
of vk(s) and wk(s) give the instantaneous centerline re-
construction (SI). We find that the zero-function v0(s)
is close to the best fit straight line through the motion,
accounting for 85% of the time-averaged centerline recon-
struction while most of the oscillations are accounted for
by the first excited-states v1(s) and w1(s) corresponding
to the smallest magnitude non-zero eigenvalues (13.3%).
Since most (> 98%) of the dynamics is captured by the
zero-state and first excited states, one can in fact fur-
ther reduce the complexity of the Schrödinger model,
by approximating H1 through its projection Ĥ1 on the
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eigenspaces corresponding to the first two distinct eigen-
values. This additional low-rank approximation also fur-
ther reduces the risk of overfitting and hence improves
model generalizability, similar to sparsity promotion in
other dynamical inference methods [54].

The compact low-rank characterization of the undu-
latory shape dynamics makes it possible to compare
the locomotion behaviors of C. elegans, previously pro-
posed neuro-mechanical worm models [33], C. occipi-
talis snakes [37], and robotic toy snakes, by measur-
ing the Grassmann distance [55] between the dominant
eigenspaces of Ĥ1. As most of the variation of the os-
cillatory dynamics is contained in the first excited-states
v1 and w1, we determined the pairwise Grassmann dis-
tances between the eigenspaces spanned by v1 and w1 for
the various systems (SI). Both the distance matrix and a
corresponding 2D phase diagram constructed by multidi-
mensional scaling reveal that the neuro-mechanical worm
model [33] succeeds in reproducing key dynamical aspects
of C. elegans locomotion, whereas the robotic toy snake
used in our experiments is equally far from real snake or
worm locomotion (Fig. 4).

From a practical perspective, the above results show
how symmetry-constrained mode representations can fa-
cilitate a low-dimensional description and efficient clas-
sification of biophysical dynamics. The underlying in-
ference framework is directly applicable to diagnose and
quantify the effects of genetic or chemical perturbations
on animal locomotion within and across species. From
a theoretical perspective, the fact that translational and
rotational invariance combined with a quadratic integral
constraint generically lead to a Schrödinger equation [45]
in mode space, promises advances in the quantitative un-
derstanding of biological systems, as the comprehensive
toolbox of quantum physics [56, 57] now becomes avail-
able to characterize and predict behavioral dynamics.
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DATA PREPROCESSING

Raw data from the experiments consist of video files of the animal/simulation/robot motion. The analysis process
for this data follows closely to that described in [S16]. Each image frame is thresholded to obtain a binary image.
These binary images are then dilated and eroded in order fill in holes while preserving object shape. The resulting
image is then thinned to obtain a centerline. Finally, a set number of equally spaced points along the centerline is
generated.

To obtain the Chebyshev mode coefficients, we obtain (x, y) positions at the Chebyshev points by linearly interpo-
lating between the centerline points. We perform the transformation to a degree-19 Chebyshev polynomial, of which
we use the mode coefficients up to degree-9 to represent the shape of the body.

In order to determine the dominant mode frequencies used in Figure 1c, we take the Fourier transform of modes
x̂k and ŷk for k = 1, ..., n. We extract the frequency which has the largest power in the spectra, which we call the
dominant frequency. We then average the dominant frequency for all modes and plot this average in Figure 1f.

TOY SNAKE EXPERIMENTS

The toy snake was manufactured by Top Race and purchased from Amazon. The toy snake was placed on green
construction paper on a hardwood floor and was remotely controlled to move in a straight line. Videos were filmed
on an iPhone 12 Pro resting on a surface 1 meter above the floor.
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Actual videos

Grayscale with centerline

t = 2.2 s 2.5 s 2.9 s

FIG. S1. (top) Images from the toy snake video used in the paper. (bottom) Corresponding grayscale images with points along
the centerline overlayed.

FIG. S2. Reconstruction error plots for the worm simulation, snake, and toy snake. The same plot for the worm is shown in
Main Text Figure 1(c).

RECONSTRUCTION ERROR

The reconstruction error used in Figure 1c and Figure S2 is calculated using

relative reconstruction error =

∑
t,s

√
(xc − xd)2 + (yc − yd)2∑

t,s

√
(x̂0 − xd)2 + (ŷ0 − yd)2

, (S1)

where xc and yc are the x and y points calculated from the Chebyshev approximation and xd and yd are the x and y
points from the experimental data. This can be interpreted as a relative mean absolute error, where we scale relative
to the distances between all worm points from the worm center of mass. Therefore, the error is a measure of the
distance deviations from the worm CCOM (a close approximation to the COM) accounted for by the Chebyshev
polynomial approximation.

INTERPRETATION OF COEFFICIENTS

Starting from the definition of the Chebyshev modes Eq. (1) we can express the n = 1 coefficients as,[
x̂1(t)
ŷ1(t)

]
=

2

π

∫ 1

−1

ds w(s) s

[
x(s, t)
y(s, t)

]
=

2

π

∫ 1

−1

ds
1

w(s)

[
xs(s, t)
ys(s, t)

]
(S2)

where we use the fact that T1(s) = s,
∫

ds sw(s) = −(1− s2)1/2 = −1/w(s) and integration by parts. The resulting
expression is the 1/w-weighted Chebyshev orientation.
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CONSTRAINED LINEAR MODELS IN MODE SPACE

Starting from a vector field representation of a centerline, r = (x(t, s), y(t, s)), where s is the arclength along the
centerline and r is the Cartesian coordinate of the centerline at position s, we show how physical constraints impose
structure on a linear model in mode space.

Rotational invariance

We expect that our model should be invariant under a rotation of the coordinate system given by

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
.

Applying R to (1) tells us how the coefficients transform as well,[
x′(s, t)
y′(s, t)

]
=

n∑
k=0

Tk(s)

[
x̂′k(t)
ŷ′k(t)

]

R

[
x(s, t)
y(s, t)

]
=

n∑
k=0

Tk(s)R

[
x̂k(t)
ŷk(t)

]

which implies that, [
x̂′k(t)
ŷ′k(t)

]
= R

[
x̂k(t)
ŷk(t)

]
=

[
x̂k(t) cos θ − ŷk(t) sin θ
x̂k(t) sin θ + ŷk(t) cos θ

]
.

Hence, the coefficient state vector Ψ transforms as Ψ′ = (R⊗ In+1)Ψ where ⊗ denotes the Kronecker product of two
matrices and In is the n× n identity matrix. Applying this to a general linear dynamics for Ψ, yields,

Ψ̇′ = MΨ′ (S4a)

(R⊗ In+1)Ψ̇ = M(R⊗ In+1)Ψ (S4b)

then equating M in (S4a) to (S4b) then yields the condition on M ,

(R⊗ In+1)M = M(R⊗ In+1) (S4c)

Writing (S4c) out in block matrix form[
In+1 cos θ −In+1 sin θ
In+1 sin θ In+1 cos θ

] [
Mxx Mxy

Myx Myy

]
=

[
Mxx Mxy

Myx Myy

] [
In+1 cos θ −In+1 sin θ
In+1 sin θ In+1 cos θ

]
and comparing the left and right hand sides, yields the following two constraints, −Myx = Mxy = M̃2 and Mxx =

M̃yy = M1. Rotational invariance therefore enforces that M has the following block structure,

M =

[
M̃1 M̃2

−M̃2 M̃1

]
. (S5)

Translational invariance

We further expect that the model we learn should not depend on the origin of the coordinate system. The
dynamics, therefore, should be invariant under x′ = x+ cx and y′ = y+ cy. The coefficients in mode space transform
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as, x̂′0 = x̂0 +cx, ŷ′0 = ŷ0 +cy and the other coefficients are unchanged. As a result, the coefficient vector Ψ transforms
as,

Ψ′ = Ψ +

[
cxe1

cye1

]
, (S6)

where e1 is the standard n+1 dimensional unit vector along the first dimension. The transformed dynamical equation
using M from (S5) can be written as,

Ψ̇′ = MΨ′

d

dt

[
Ψx + cxe1

Ψy + cye1

]
=

[
M̃1 M̃2

−M̃2 M̃1

] [
Ψx + cxe1

Ψy + cye1

]
d

dt

[
Ψx

Ψy

]
=

[
M̃1 M̃2

−M̃2 M̃1

] [
Ψx

Ψy

]
+

[
M̃1 M̃2

−M̃2 M̃1

] [
cxe1

cye1

]
.

For the dynamics to be invariant under arbitrary shifts [cx, cy] we need M̃1e1 = 0 and M̃2e1 = 0, which implies that

that the first columns of M̃1 and M̃2 must be all 0. This decouples the dynamics of the k = 0 modes from the rest of
the modes. Splitting Ψ into a 0 mode vector ψ0 = [x̂0, ŷ0] and a higher mode vector ψ̂ = [x̂1, . . . , x̂n, ŷ1, . . . , ŷn], the
dynamics becomes,

ψ̇0 =

[
m̂†1 m̂†2
−m̂†2 m̂†1

]
ψ̂ (S7a)

˙̂
ψ =

[
M̂1 M̂2

−M̂2 M̂1

]
ψ̂ (S7b)

with the same structure as before but new block elements.

Length constraint

For undulatory motion we have one additional constraint: the length of the centerline is approximately constant.
The length of the centerline in terms of the real fields x(s, t) and y(s, t) is,

`(t) =

∫ 1

−1

ds
√
xs(s, t)2 + ys(s, t)2. (S8)

To allow for a convenient representation of an approximate length constraint in mode space we consider `2. Using the

Cauchy-Schwarz inequality, 〈f, g〉2 ≤ 〈f, f〉〈g, g〉, with metric 〈f, g〉 =
∫ 1

−1
ds f ·g, we can derive a convex upper-bound

on the square length using f = 1 and g =
√
xs(s, t)2 + ys(s, t)2,

`2 =

(∫ 1

−1

ds 1 ·
√
xs(s, t)2 + ys(s, t)2

)2

≤
(∫ 1

−1

ds 12

)(∫ 1

−1

ds [xs(s, t)
2 + ys(s, t)

2]

)
`2 ≤ 2˜̀2 (S9)

where we define a convex approximate square length ˜̀2,

˜̀2 =

∫ 1

−1

ds [xs(s, t)
2 + ys(s, t)

2]. (S10)

We can find an approximation for ` in terms of ˜̀ by considering the Taylor expansion of f(a, b) =
√
a+ b around

a0 and b0. Any k = n+mth order derivative of f(a, b), is given by,

∂n

∂an
∂m

∂bm
f(a, b) = − (−1)n+m

2
√
π

Γ(n+m− 1/2)
1

(a+ b)n+m−1/2
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The Taylor series then becomes,

√
a+ b =

√
a0 + b0 +

1

2
√
a0 + b0

((a+ b)− (a0 + b0))−
∞∑
k=2

(−1)kΓ(k − 1/2)

2
√
π(a0 + b0)k!

(
a+ b

a0 + b0
− 1

)k
=

1

2

√
a0 + b0 +

a+ b

2
√
a0 + b0

−
∞∑
k=2

(−1)kΓ(k − 1/2)

2
√
π(a0 + b0)k!

(
a+ b

a0 + b0
− 1

)k
. (S11)

Setting a = x2
s and b = y2

s we can expand around a0 = 〈x2
s〉 and b0 = 〈y2

s〉 in (S11), where we use 〈·〉 to represent the
average value over s and t

〈f〉 =
1

2T

∫ T

0

dt

∫ 1

−1

ds f(s, t),

to get an expansion of the square-root term in (S8),

√
x2
s + y2

s =
1

2

√
〈x2
s〉+ 〈y2

s〉+
x2
s + y2

s

2
√
〈x2
s〉+ 〈y2

s〉
−
∞∑
k=2

(−1)kΓ(k − 1/2)

2
√
π(〈x2

s〉+ 〈y2
s〉)k!

(
x2
s + y2

s

〈x2
s〉+ 〈y2

s〉
− 1

)k
(S12)

Integrating (S12) over s, we get the following relationship between ` and ˜̀,

` =

∫ 1

−1

ds
√
x2
s + y2

s =
√
〈x2
s〉+ 〈y2

s〉+
1

2
√
〈x2
s〉+ 〈y2

s〉

∫ 1

−1

ds
(
x2
s + y2

s

)
+R(∆)

` ≈ `a =
√
〈x2
s〉+ 〈y2

s〉+
1

2
√
〈x2
s〉+ 〈y2

s〉
˜̀2 (S13)

where we define

∆ =
x2
s + y2

s

〈x2
s〉+ 〈y2

s〉
− 1

a measure of how much the deviations vary from their average. We can get a bound for the magnitude of R(∆) by
evaluating the remaining summation and utilizing the triangle inequality,

|R(∆)| =

∣∣∣∣∣
∫ 1

−1

ds

∞∑
k=2

(−1)kΓ(k − 1/2)

2
√
π(〈x2

s〉+ 〈y2
s〉)k!

∆k

∣∣∣∣∣
≤
∫ 1

−1

ds

∞∑
k=2

Γ(k − 1/2)

2
√
π(〈x2

s〉+ 〈y2
s〉)k!

|∆|k

≤
∫ 1

−1

ds

∞∑
k=2

Γ(k − 1/2)

2
√
π(〈x2

s〉+ 〈y2
s〉)k!

∆k
M

=
1√

π(〈x2
s〉+ 〈y2

s〉)

∞∑
k=2

Γ(k − 1/2)

k!
∆k
M

=
2−∆M − 2

√
1−∆M√

〈x2
s〉+ 〈y2

s〉
(S14)

provided that ∆M ≤ 1, where ∆M = maxs,t|∆|. For example, for the worm data considered here, ∆M = 0.48 and√
〈x2
s〉+ 〈y2

s〉 = 0.50, which give a value of |R(∆)| < 0.15, resulting in very close agreement between the true value of `
and the approximation calculated using (S13) (Fig. S3). In practice the maximum error is much lower: the maximum
deviation between the approximation and true value of ` for the worm data is 0.0084 with a corresponding maximum
relative error of 0.0073. Unitless values of ∆M ,

√
〈x2
s〉+ 〈y2

s〉, |R(∆)| bounds and the maximum calculated errors are
shown in Table I, further highlighting the validity of this approximation across of all the experimental systems studied
here.

Since `a is a function solely of ˜̀2, keeping `a constant is the same as keeping ˜̀2 constant. We, therefore, continue
working under the assumption that ˜̀2 is constant for undulatory motion.
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FIG. S3. (top) True length ` and approximate length `a calculated using (S13) show close agreement. (bottom) Deviation
between `a − ` shows that the true deviation is much lower than the bound 0.13. Also the deviation is always positive which
means `a provides a close upper bound on `.

Length constraint in mode-space

One of the benefits of working with ˜̀2 rather than ` is that x and y appear quadratically, making it convenient to
represent ˜̀2 in mode space. We can express, xs(s, t) and ys(s, t) in mode space by differentiating (1),

[
xs(s, t)
ys(s, t)

]
=

n∑
k=0

d

ds
Tk(s)

[
x̂k(t)
ŷk(t)

]
. (S15)

Substituting (S15) into the expression for ˜̀2 (3) gives

˜̀2 =

∫ 1

−1

ds

n∑
k,m=1

[x̂k(t)x̂m(t) + ŷk(t)ŷm(t)]
dTk
ds

(s)
dTm
ds

(s)

=

n∑
k,m=1

[x̂k(t)x̂m(t) + ŷk(t)ŷm(t)]

∫ 1

−1

ds
dTk
ds

(s)
dTm
ds

(s)

=

n∑
k,m=1

[x̂k(t)x̂m(t) + ŷk(t)ŷm(t)]Wk,m

= ψ̂†
[
W 0
0 W

]
ψ̂† (S16a)

where we define the symmetric matrix W with elements given by,

Wk,m =

∫ 1

−1

ds
dTk
ds

(s)
dTm
ds

(s). (S16b)

System ∆M

√
〈x2s〉+ 〈y2s〉/` |R(∆)| × ` bound Maximum relative error

C. elegans 0.48 0.50 0.15 0.0073
Neuro-mechanical worm 0.42 0.50 0.12 0.0064

C. occipitalis 0.40 0.50 0.10 0.0066
Toy snake 0.41 0.50 0.11 0.026

TABLE I. Length approximation parameters for the systems studied here. The low relative errors highlight the validity of our
relaxed length constraint.
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Note that the values of W are fixed by the choice of basis. Therefore, W is a basis dependent constant. The matrix
W has several advantageous properties: it is symmetric positive definite,

a†Wa =

n∑
k,m=1

akWk,mam =

∫ 1

−1

ds

(
n∑
k=1

ak
dTk
ds

(s)

)(
n∑

m=1

am
dTm
ds

(s)

)
=

∫ 1

−1

ds

(
n∑
k=1

ak
dTk
ds

(s)

)2

≥ 0, (S17)

since we can interpret the summation in the parentheses as the derivative of a Chebyshev series representation of
some function f(s) =

∑n
k=0 akTk(s). For the expression above to be 0, requires then that f ′(s) = 0 for all s and,

therefore, f(s) = a0T0(s), immediately implying that a = 0 for equality in the above expression.
Making use of the following four Chebyshev polynomial identities,

d

ds
T0(s) = 0 (S18a)

d

ds
Tk(s) = kUk−1(s) (S18b)

Un(s)Um(s) =

2 min(n,m)∑
k=0

U|n−m|+2k(s) (S18c)

∫ 1

−1

dsUn(s) =
Tn+1

n+ 1

∣∣∣∣1
−1

=
1

n+ 1
− (−1)n+1

n+ 1
=

1 + (−1)n

n+ 1
(S18d)

we can derive the values of Wm,n,

Wm,n =

∫ 1

−1

ds
dTn
ds

(s)
dTm
ds

(s)

= nm

∫ 1

−1

dsUn−1(s)Um−1(s)

= nm

∫ 1

−1

ds

min(n−1,m−1)∑
k=0

U|n−m|+2k(s)

= nm

min(n−1,m−1)∑
k=0

∫ 1

−1

dsU|n−m|+2k(s)

= nm

min(n−1,m−1)∑
k=0

1 + (−1)|n−m|+2k

|n−m|+ 2k + 1

= nm(1 + (−1)|n−m|)

min(n,m)−1∑
k=0

1

|n−m|+ 2k + 1

=

{
0 if m− n even

2nm
∑n+m−1
k=|n−m|+1

1
k if m− n even

(S19)

which shows that W has a checkerboard pattern and is diagonally dominant (Fig. S4).
The basis dependent matrix W defines a hyperellipsoid that the mode vector ψ̂ lies on. Since W is symmetric,

positive-definite it has a Cholesky factorization W = LL†, which we can use to define a new mode vector

ψ =
1
˜̀

[
L† 0
0 L†

]
ψ̂

that lies on the unit hypersphere. Since the matrix we apply is block-diagonal applying this transformation to S7
does not change the structure and we get the transformed equations,

ψ̇0 =

[
m†1 m†2
−m†2 m†1

]
ψ (S20a)

ψ̇ =

[
M1 M2

−M2 M1

]
ψ. (S20b)
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W

FIG. S4. W matrix for n = 10

Under this transformation the length constraint becomes,

ψ†ψ = 1. (S20c)

Differentiating the new constraint with respect to time we get a dynamical constraint for length conservation,

ψ̇†ψ +ψ†ψ̇ = 0

ψ†
[
M†1 +M1 M2 −M†2
M†2 −M2 M1 +M†1

]
ψ = 0.

For this to be true for any ψ, we must further constrain the real block-diagonal M1 = −M†1 = A to be skew-symmetric

and the real block-off-diagonal M2 = M†2 = S to be symmetric. The final real form of our constrained dynamics is
then given by,

ψ̇0 =

[
m†1 m†2
−m†2 m†1

]
ψ (S21a)

ψ̇ =

[
A S
−S A

]
ψ (S21b)

The full dynamical matrix has now been constrained to skew-symmetric and must, therefore, have purley imaginery
eigenvalues. Therefore multiplying S21b by the imaginary unit i, results in our final complex Schrödinger type
equations, that take the form of Schroödinger’s equations in quantum mechanics for the shape dynamics,

ψ̇0 =

[
h†1 h†2
−h†2 h†1

]
ψ (S22a)

iψ̇ =

[
H1 H2

−H2 H1

]
ψ = Hψ (S22b)

when H1 = iA is a Hermitian matrix and H2 = iS is a skew-Hermitian matrix.

Straight motion

For straight motion we expect that the modes associated with x and the modes associated with y do not interact
significantly leading to the further simplification that H2 = S = 0 in the final constrained dynamics.

MODEL INFERENCE

Model inference: theory

The problem of learning an equation of the form (S21) from data for ψ and ψ0 at discrete time points {tn}Mn=0 can
be formulated as a physics-informed dynamic mode decomposition (PI-DMD) optimization problem. In continuous
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time the problem becomes,

min
A

T∑
n=0

‖ψ̇(tn)−Aψ(tn)‖22 = min
A
‖Ṗ −AP‖2F (S23)

where P = [ψ(t0)ψ(t1)ψ(t2) · · · ψ(tT )] is the matrix whose columns consists of the discrete time samples of ψ.
The minimization problem in (S23) has an analytical minimum in terms of the singular value decomposition (SVD)
of P but requires numerically differentiating noisy data to calculate Ṗ an ill-posed and challenging problem. We,
therefore, formulate the problem in discrete time. The general solution of a linear ODE of the form, ẋ = Mx, is
x(t) = exp(At)x(0). If the data are seperated by a constant time step ∆t we can reformulate (S23) in the form,

min
A

T−1∑
n=0

∥∥ψ(tn+1)− eA∆tψ(tn)
∥∥2

2
= min

A

∥∥P2:T − eA∆tP1:T−1

∥∥2

F
(S24)

where P1:T−1 consists of the first T −1 columns of P and P2:T consists of the last T −1 columns. The skew-symmetric
structure of the continuous time problem does not transfer to the discrete time problem, instead exp(A∆t) is an
orthogonal matrix with a fixed form of its eigenvalues. Additionally, there is no guarantee that the matrix A will
produce reintegrated trajectories close to the original input data. Exploiting the matrix exponential solution of linear
ODEs we can modify (S24)

min
A

T∑
m=1

N∑
n=0

wn
[
ψ(tm)− eAtmψ(t0)

]2
n

(S25)

where we introduce the possibility of a weighting function wn on the nth mode to account for the magnitude variations
across the modes. The spectral theorem for skew-symmetric matrices tells us that a real N×N skew-symmetric matrix
can be written in the form,

A = QΣQ† =


...

...
...

...
...

...
...

v1 w1 v2 w2 · · · vr wr v0

...
...

...
...

...
...

...




Λ1

Λ2

. . .

Λr
0





· · · v†1 · · ·
· · · w†1 · · ·
· · · v†2 · · ·
· · · w†2 · · ·

...
· · · v†r · · ·
· · · w†r · · ·
· · · v†0 · · ·


where Q is a real orthogonal matrix Q†Q = I, the Λi are 2× 2 blocks matrices

Λi =

[
0 λi
−λi 0

]
with r ≤ bN/2c the number of distinct complex conjugate pairs of eigenvalues and the remaining block is a N − 2r×
N − 2r zero matrix. When N is odd there must always be a 0 row and column in Σ. The matrix exponential then
has the simple form, exp(At) = Q exp(Σt)Q†, where

exp(Σt) =


exp(Λ1t)

exp(Λ2t)
. . .

exp(Λrt)
I


and

exp(Λit) =

[
cosλit sinλit
− sinλit cosλit

]
.
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The optimization loss function (S25) can then be written as,

min
Q,{λi}ri=1

T∑
m=1

N∑
n=0

wn
[
ψ(tm)−Q exp(Σtm)Q†ψ(t0)

]2
n
. (S26)

Writing the formula in this way enables us to optimize or constrain the eigenvectors and eigenvalues of A separately.
To optimize Q we follow the procedure in [S44], parameterizing the orthogonal matrix as the product of Householder
matrices, Q = H1H2 · · ·HN , where each Householder matrix has the from

Hn =

[
In−1 0

0 IN−n+1 − p†npn
|pn|2

]

and can be further parameterized by a vector pn of length N − n + 1. Fast in-place matrix vector multiplication
algorithms exist for both Householder matrices and exp(Σt) enabling us to efficiently compute the loss function from
the combined parameter vector p = [p1, · · ·pN , λ1, · · · , λr]. To minimize the loss function we calculate gradients
using automatic differentiation and perform gradient descent using both the AdaBelief algorithm followed by BFGS.

Model inference: practice

The input data are the (x, y) positions along the centerline of an object undergoing undulatory motion. We begin
by performing a Chebyshev transformation at each time step to transform the real space data as a function of time
and arc length to mode data as a function of time, ψ̂. Next, we calculate the rescaled mode vectors ψ from the scaled
mode vectors ψ̂.

Since we focus on learning dynamics across a timescale of one oscillation of the propulsive body wave, the next
step is to determine the length of one oscillation from the starting time point. We first compute the FFT for a range
of data starting at the specified time and find the maximum frequency amplitude. We then search near the period
corresponding to the maximum frequency to locate the most similar shape to the initial shape, computed by finding
the L2 norm of the difference between the shape modes. The minimum difference is then considered to be the end of
the oscillation. We set the eigenvalues of the Hamiltonian that we will infer to be integer multiples of this oscillation
frequency.

The model inference is performed on Equations (4). We first optimize the Hamiltonian with the eigenvalues
constrained using the AdaBelief gradient-based optimization algorithm with forward-mode automatic differentation
for gradient calculations. After this process, the BFGS algorithm is used to further optimize the Hamiltonian. After
fitting the dynamics for the shape modes, the center of mass dynamics, described by h, is optimized with the same
optimization procedure used for the Hamiltonian.

Loss function weighting

As described in the paper, we utilize a loss function that consists of a combined mode space and real space
loss. The real space loss LRS(pH) calculates the mean square deviation between the CCOM subtracted field data
(x(s, t)−x̂0(t), y(s, t)− ŷ0(t)) and their prediction reconstructed from ψP calculated by integrating (4c) with H1(pH1

).
The mode space loss LMS(pH) calculates the mean square deviation between the ψD calculated from the data and ψP
normalized by the maximum standard deviations of all modes ψD. The effect of the relative weighting of these losses
is shown in Figure S5. As we increase the real space loss (move to the left on the x-axis), the centerline reconstruction
error decreases (blue triangles). However, if we only have real space loss, the generalization error is very large (black
circle in the top left corner), and the generalization error takes a minumum value for similar weighting of the two
losses. Therefore, increasing the mode space loss promotes smaller generalization errors. In addition, while the low
rank fit error is slightly larger than the full rank fit error (open versus closed triangles), the low rank generalization
error is smaller than the full rank generalization error (open versus closed circles). These trends reveal that the mode
space promotes generalizability while the real space loss promotes a good fit and the low rank model generalizes better
than the full rank model. In the paper, we use a weight = 0.5, which is between the minimum generalization error
weights for the full and low rank models.
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ANALYTICAL SOLUTION TO THE MODEL

We can use the eigendecomposition of the final H1 matrix to derive the analytical solution for ψ and r(s, t)− r0(t),
where r0 = ψ0T0(s) = ψ0 represents the dynamics coming from the constant Chebyshev polynomial T0 = 1 (CCOM).
For a (2K+1)×(2K+1) dimensional H1 matrix we will have 1 zero eigenvalue and a corresponding real eigenvector φ0

and K opposite sign pairs of real eigenvalues and their corresponding complex conjugate eigenvectors, λ±1 , λ
±
2 , · · · , λ

±
K

and φ±1 ,φ
±
2 , · · · ,φ

±
K . The complex eigenvector can be decomposed into a real and imaginary part, φk = vk + iwk.

Using this formulation, the analytical solution corresponding to a single eigenvalue and eigenvector pair can be
written as

s±k = eiλ
±
k tφ±k , s0 = φ0 = v0.

Using Euler’s formula we get,

s±k = (cosλ±k t+ i sinλ±k t)φ
±
k = (cosλ+

k t± i sinλ+
k t)(vk ± iwk),

which separates into real and imaginary parts

s±k = (cosλ+
k tvk − sinλ+

k twk)± i(cosλ+
k twk + sinλ+

k tvk).

Defining ṽk(t) = (cosλktvk − sinλktwk) and w̃k(t) = (cosλktwk + sinλktvk) gives

s±k = ṽk(t)± iw̃k(t).

Each pair of ṽk(t) and w̃k(t) are two linearly independent solutions so we can write the general solution as

s = c0,1v0 +

K∑
k=1

ck,1ṽk(t) + ck,2w̃k(t).

Since both ψx and ψy satisfy the same dynamical equation we get the general solution for ψ(t),

ψ(t) =

[
ψx
ψy

]
=

[
c0,1v0(t)
d0,1v0(t)

]
+

K∑
k=1

[
ck,1ṽk(t) + ck,2w̃k(t)
dk,1ṽk(t) + dk,2w̃k(t)

]
. (S27)

(weight)*LMS + (1-weight)*LRS

fit error

low rank fit error

generalization error

low rank generalization error

FIG. S5. Centerline reconstruction error for models trained with different weightings of the real space and mode space loss in
the combined loss function. Generalization error is the centerline reconstruction error after simulating the model on an initial
condition different from the initial condition used in fitting. Fit error is the centerline reconstruction error when simulating the
model on the initial condition from fitting.
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We now convert Eq. (S27) to real space. First, we undo the L scaling to go from the hypersphere back to the
hyperellipsoid,

ψ̂(t) =

[
ψ̂x
ψ̂y

]
= `

[
c0,1(L−1)†v0(t)
d0,1(L−1)†v0(t)

]
+ `

K∑
k=1

[
ck,1(L−1)†ṽk(t) + ck,2(L−1)†w̃k(t)
dk,1(L−1)†ṽk(t) + dk,2(L−1)†w̃k(t)

]
(S28)

then the real space solution can be written for x(s, t) as,

x(s, t) =

N∑
n=0

x̂n(t)Tn(s) = x̂0(t) + T(s)†ψ̂x(t)

where we use the fact that T0(s) = 1 and define the Chebyshev vector T(s) = [T1(s), T2(s), · · · , TN (s)]. Substituting
in the solution (S28) we get,

x(s, t)− x̂0(t) = `T (s)†(L−1)†

[
c0,1v0 +

K∑
k=1

ck,1ṽk + ck,2w̃k

]

using the definition of ṽk and w̃k the equation becomes,

= `
[
L−1T(s)

]† [
c0,1v0 +

K∑
k=1

ck,1(cos (λ+
k t)vk − sin (λ+

k t)wk) + ck,2(cos (λ+
k t)wk + sin (λ+

k t)vk)

]

x(s, t)− x̂0(t) = `
[
L−1T(s)

]† [
c0,1v0 +

K∑
k=1

cos (λ+
k t)(ck,1vk + ck,2wk) + sin (λ+

k t)(ck,2vk − ck,1wk)

]
,

finally we can write this in terms of the real space eigenfunctions vk(s) = T†(s)(L−1)†vk and wk(s) = T†(s)(L−1)†wk

x(s, t)− x̂0(t) = `

[
c0,1v0(s) +

K∑
k=1

cos (λ+
k t)(ck,1vk(s) + ck,2wk(s)) + sin (λ+

k t)(ck,2vk(s)− ck,1wk(s))

]
, (S29a)

a similar calculation for y(s, t) yields,

y(s, t)− ŷ0(t) = `

[
d0,1v0(s) +

K∑
k=1

cos (λkt)(dk,1vk(s) + dk,2wk(s)) + sin (λkt)(dk,2vk(s)− dk,1wk(s))

]
. (S29b)

Now consider the state where we enforce that the λk = kλ are integer multiples of some base frequency λ

x(s, t)− x̂0(t) = `

[
c0,1v0(s) +

K∑
k=1

cos (kλt)(ck,1vk(s) + ck,2wk(s)) + sin (kλt)(ck,2vk(s)− ck,1wk(s))

]
. (S30)

We define the time-average square deviation from x̂0(t) as〈
(x(s, t)− x̂0(t))

2
〉
t
(s) =

λ

2π

∫ 2π
λ

0

dt (x(s, t)− x̂0(t))
2
.

Noting the orthogonality of sin and cos means that the only trigonometric functions that have non-zero time average
are of the form cos(lλt)2 and sin(lλt)2, the can substitute (S30) into the definition for the squared deviation and only
keep non-zero terms,〈

(x(s, t)− x̂0(t))
2
〉
t
(s) =

`2λ

2π

∫ 2π
λ

0

dt c20,1v0(s)2 +

K∑
k=1

[(ck,1vk(s) + ck,2wk(s))]
2

cos(kλt)2

+

K∑
k=1

[ck,2vk(s)− ck,1wk(s)]
2

sin(kλt)2

= `2c20,1v0(s)2 +
`2

2

K∑
k=1

(
c2k,1 + c2k,2

) (
vk(s)2 + wk(s)2

)
. (S31a)
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Similarly we have for y(s, t) we have,

〈
(y(s, t)− ŷ0(t))

2
〉
t
(s) = `2d2

0,1v0(s)2 +
`2

2

K∑
k=1

(
d2
k,1 + d2

k,2

) (
vk(s)2 + wk(s)2

)
. (S31b)

This means that the contribution to the mean square deviation corresponding to each eigenvalue takes the form of a
spatial density ρk(s) = vk(s)2 +wk(s)2 with corresponding weight c20,1 + d2

0,1 for k = 0 and c2k,1 + c2k,2 + d2
k,1 + d2

k,2 for
k ≥ 1.

We can readily extend this time average to a square deviation from some time-constant line l(s),

〈
(x(s, t)− x̂0(t)− l(s))2

〉
t
(s) = (`c0,1v0(s)− l(s))2

+
`2

2

K∑
k=1

(
c2k,1 + c2k,2

) (
vk(s)2 + wk(s)2

)
. (S31c)

For example, if l(s) = `c0,1v(s), an approximation to the center line of the worm, the first term vanishes meaning the
dominant term in the deviation is,〈

(x(s, t)− x̂0(t)− `c0,1v0(s))
2
〉
t
(s) ≈ `2

2

(
c21,1 + c21,2

) (
v1(s)2 + w1(s)2

)
Note since vk and wk are the columns or our orthogonal matrix Q in the spectral decomposition v†kvl = δl,k,

w†kwl = δl,k and v†kwl = 0. This implies that,

∫ 1

−1

w(s)vl(s)vk(s) =

N∑
n=1

N∑
m=1

[
(L−1)†vk

]
n

[
(L−1)†vl

]
m

∫ 1

−1

dsw(s)Tn(s)Tm(s)

=
π

2

N∑
n=1

[
(L−1)†vk

]
n

[
(L−1)†vl

]
n

(S32)

GRASSMANN DISTANCE

To calculate the distances between the subspaces spanned by the real and imaginary parts of the eigenvector
corresponding to the smallest nonzero eigenvalues (Fig. 4), we use the Grassmann distance. The Grassmann distance
between two subspaces can be calculated by

dG(A,B) =

√∑
i

θ2
i , (S33)

where A and B are two matrices whose columns are an orthonormal basis of their respective subspaces and θi are the
principal angles between A and B [S55]. The principal angles can be calculated through an SVD, where the singular
values of A>B are σi = cos (θi).
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