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SUMMARY 17 

Changes in an animal’s behavior and internal state are accompanied by widespread 18 
changes in activity across its brain. However, how neurons across the brain encode 19 
behavior and how this is impacted by state is poorly understood. We recorded brain-wide 20 
activity and the diverse motor programs of freely-moving C. elegans and built probabilistic 21 
models that explain how each neuron encodes quantitative features of the animal’s 22 
behavior. By determining the identities of the recorded neurons, we created, for the first 23 
time, an atlas of how the defined neuron classes in the C. elegans connectome encode 24 
behavior. Many neuron classes have conjunctive representations of multiple behaviors. 25 
Moreover, while many neurons encode current motor actions, others encode recent actions. 26 
Changes in behavioral state are accompanied by widespread changes in how neurons 27 
encode behavior, and we identify these flexible nodes in the connectome. Our results 28 
provide a global map of how the cell types across an animal’s brain encode its behavior. 29 

 30 

INTRODUCTION 31 

 Animals can generate a vast array of behavioral outputs that vary depending on their 32 
environment, context, and internal state. The neural circuits that control these behaviors are 33 
distributed across the brain, and their dynamic interactions underlie the neural control of 34 
behavior. To decipher how these circuits work, it will be critical to relate the activity of this full 35 
population of neurons to specific features of animal behavior. However, it is immensely 36 
challenging to measure brain-wide activity and comprehensive behavioral information of a 37 
freely-moving animal. For this reason, it has remained unclear how neurons and circuits across 38 
entire nervous systems represent an animal’s diverse behavioral repertoire, and how this flexibly 39 
changes depending on an animal’s context or internal state. 40 
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 Recent studies suggest that internal states and moment-by-moment behaviors are 41 
associated with widespread changes in neural activity spanning many brain regions (Allen et al., 42 
2019; Brezovec et al., 2022; Hallinen et al., 2021; Marques et al., 2020; Musall et al., 2019; 43 
Schaffer et al., 2021; Stringer et al., 2019). For example, behavioral states, such as active versus 44 
quiet wakefulness, and homeostatic states, like thirst, are associated with changes in neural 45 
activity in many brain regions (Allen et al., 2019; Niell and Stryker, 2010; Stringer et al., 2019). 46 
In addition, instantaneous motor actions are associated with altered neural activity across a 47 
surprisingly large number of brain regions (Musall et al., 2019; Stringer et al., 2019). This gives 48 
rise to a view that there are ongoing representations of an animal’s behavior and its state in many 49 
brain regions. However, our understanding of how global neural dynamics spanning many brain 50 
regions encodes behavior remains limited. For instance, in mammalian systems, representations 51 
of motor actions occur throughout the brain: in the cortex, cerebellum, midbrain, spinal cord, and 52 
more. But the actual forms of the neural representations – how the neurons and circuits encode a 53 
diverse set of motor outputs – in most of these regions are still unknown. In addition, given the 54 
vast number of cell types involved and their broad spatial distributions, characterizing this entire 55 
system is not yet tractable. 56 

 Adult hermaphrodites of the nematode C. elegans have a compact nervous system 57 
consisting of 302 defined neurons with known connectivity (Cook et al., 2019; White et al., 58 
1986; Witvliet et al., 2021). C. elegans generates a well-defined repertoire of motor programs: 59 
locomotion, feeding, head oscillations, defecation, egg-laying, and postural changes. Previous 60 
studies of C. elegans behavior have shown that this animal’s nervous system is subject to 61 
modulation, such that animals can express different behaviors as they switch between different 62 
behavioral states (Flavell et al., 2020). For example, animals enter sleep-like states during 63 
development and after intense stress (Raizen et al., 2008; Van Buskirk and Sternberg, 2007). 64 
Awake animals exhibit different locomotion patterns during different foraging states, like 65 
roaming versus dwelling (Flavell et al., 2013; Fujiwara et al., 2002; Ji et al., 2021). In addition, 66 
sudden aversive stimuli induce long-lasting behavioral states in which animals’ arousal increases 67 
for minutes after the initiating stimulus (Ardiel et al., 2017; Chew et al., 2018). Thus, C. elegans 68 
provides a system where it may be feasible to comprehensively describe how behavioral 69 
variables are encoded by activity across an entire nervous system, and how this can flexibly 70 
change over time. 71 

 Recordings of C. elegans neurons in freely-moving animals have identified some 72 
individual neurons that reliably encode specific behavioral features. The neurons AVA, AIB, and 73 
RIM encode backwards motion; AVB, RIB, AIY and RID encode forwards motion; SMD 74 
encodes head curvature; and HSN encodes egg-laying (Gordus et al., 2015; Kaplan et al., 2020; 75 
Kato et al., 2015; Li et al., 2014; Lim et al., 2016; Luo et al., 2014; Roberts et al., 2016; Zhang et 76 
al., 2008). Brain-wide calcium imaging in immobilized animals has identified population activity 77 
patterns associated with fictive locomotion dynamics (forward/reverse/turn) (Kaplan et al., 2020; 78 
Kato et al., 2015). Indeed, velocity and curvature can be decoded from population activity in 79 
moving animals (Hallinen et al., 2021), suggesting that this information is broadly reflected in 80 
neural activity. However, there is still a major gap in our understanding of how the vast majority 81 
of the neurons in the C. elegans brain encode features of the animal’s behavior as it moves 82 
freely. This is due in large part to the technical difficulty of recording comprehensive, high-83 
signal-to-noise (SNR) neural/behavioral datasets that would permit such an understanding. Thus, 84 
the main modes of behavior representation across the nervous system – timescales of 85 
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representation, how the diverse motor programs are conjunctively encoded, and state-dependent 86 
changes in representation – remain unknown.  87 

 Here, we elucidate how neurons across the C. elegans brain encode the animal’s 88 
behavior. We developed technologies that allowed us to simultaneously record high-fidelity 89 
brain-wide activity and the diverse motor programs of 37 freely-moving animals. We then 90 
devised a generalizable probabilistic encoding model that can fit most recorded neurons, 91 
providing an interpretable description of how each neuron encodes behavior. By also 92 
determining neural identity in 12 of these brain-wide recordings, we created an atlas of how most 93 
of the C. elegans neuron classes encode behavior. We find that many neuron classes have 94 
combined representations of multiple motor programs. Moreover, while many neuron classes 95 
represent current motor actions, others also represent recent motor actions, such that past 96 
behavior can be decoded from current population activity. Finally, we show that ~20% of the 97 
neurons can flexibly change how they encode behavior over time and that behavioral state 98 
changes are associated with this type of remapping, revealing a striking degree of flexibility in 99 
this system. Our results provide one of the first views of how activity across the defined cell 100 
types of an animal’s brain encodes quantitative features of its diverse motor outputs. 101 

 102 

RESULTS 103 

Technologies to record brain-wide activity and a diverse set of motor programs 104 

 To determine how neurons across the C. elegans brain encode features of the animal’s 105 
behavior, we developed a new microscopy platform for brain-wide calcium imaging in freely-106 
moving animals and wrote new software to fully automate processing of these recordings. We 107 
constructed a transgenic C. elegans strain that expresses NLS-GCaMP7f (a calcium sensor) and 108 
NLS-mNeptune2.5 (a red fluorescent protein) in all neurons. Recording nuclear-localized 109 
GCaMP makes it feasible to record brain-wide activity, though this approach will miss local 110 
compartmentalized calcium signals in neurites (Hendricks et al., 2012). After integration of the 111 
transgenes into the animal’s genome, we confirmed that the transgenic animals’ behavior was 112 
phenotypically normal, using assays for chemotaxis and associative learning (Fig. S1A). Animals 113 
were recorded on a custom microscope with two light paths, inspired by recent work (Fig. 1A-C; 114 
Nguyen et al., 2016; Venkatachalam et al., 2016). The lower light path is coupled to a spinning 115 
disk confocal for volumetric imaging of fluorescent signals in the head. The upper light path has 116 
a low-magnification objective and near-infrared (NIR) brightfield configuration to capture 117 
images of the worm for behavior quantification (Movie S1). To allow for closed-loop animal 118 
tracking, the location of the worm’s head is identified in real time (at 40 Hz) with a deep neural 119 
network (Mathis et al., 2018) and input into a PID controller that automatically moves the 120 
microscope stage to keep the animal centered. This permits us to record brain-wide calcium 121 
signals and behavior in a freely-moving animal. 122 

 We wrote a software suite (Automatic Neuron Tracking System for Unconstrained 123 
Nematodes, or ANTSUN) to automatically extract calcium traces from these videos (Fig. 1D). In 124 
this software package, we used the time-invariant mNeptune2.5 signal to determine the locations 125 
of neurons and register images from different timepoints to one another. First, a custom 3D U-126 
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Net (Wolny et al., 2020) was used to locate and segment all neurons in all timepoints. Second, 127 
we constructed a registration graph based on posture similarity, in which timepoints were 128 
represented as nodes and they were connected by an edge if the postures at the two timepoints 129 
were sufficiently similar to make volume registration tractable. Third, we solved all volume 130 
registration problems in the graph. Fourth, we devised a distance metric that indicates the 131 
likelihood that any two neurons recorded at different timepoints were the same. We then used a 132 
custom clustering approach to link neurons’ identities over time (see Methods). Finally, 133 
fluorescence (F) was computed as the ratio of GCaMP to mNeptune intensity at each time point. 134 
To ensure that our approach accurately tracked the same neuron over time as animals moved, we 135 
recorded a control strain expressing NLS-GFP at different levels in different neurons (eat-136 
4::NLS-GFP), along with pan-neuronal NLS-mNeptune2.5 (Fig. S1B). Mistakes in linking 137 
neurons’ identities over time would be obvious in this strain, since GFP levels would fluctuate in 138 
a neural trace if timepoints were sampled from different ground-truth neurons. We quantified the 139 
prevalence of errors of this type, taking into account the variance in GFP signal between 140 
neurons, and found that neural traces were correctly sampled from individual neurons in 99.7% 141 
of their recorded frames. Thus, neural identification errors are negligible in these datasets. We 142 
also estimated the degree of motion artifacts in our data by recording a transgenic strain 143 
expressing pan-neuronal NLS-GFP and NLS-mNeptune2.5 (Fig. 1E, compare to Fig. 1G; see 144 
also Fig. S1C). GFP should be constant over time, so any signal fluctuations would be due to 145 
motion or image processing artifacts. We found that the distribution of fluorescent signals over 146 
time was far more narrowly distributed for GFP, compared to GCaMP7f, suggesting that motion 147 
artifacts are also negligible (Fig. 1F; standard deviations of GCaMP and GFP distributions were 148 
0.392 and 0.074, respectively). Nevertheless, we used the GFP datasets to correct and control for 149 
any such artifacts in all analyses below (see Methods). 150 

 We also wrote software that extracts a diverse list of behavioral variables from the NIR 151 
brightfield images. In each frame, the animal is detected via a convolutional neural network and 152 
a spline is fit to its centerline. Velocity is computed as the rate of movement of the animal’s head 153 
projected onto the direction the animal is facing. Angles along the centerline parameterize the 154 
worm’s head and body posture. Feeding (or, pharyngeal pumping) is manually quantified from 155 
videos played at 25% of real-time speed. From these variables, we derive additional behavioral 156 
features: movement direction (forward/reverse), angular velocity, head curvature (oscillatory 157 
bending of the head), and more. We examined the data closely for egg-laying and defecation 158 
events, but found that animals did not exhibit these behaviors under the recording conditions, so 159 
they are not included in any of the analyses below. Altogether, these advances permit us to 160 
quantify brain-wide calcium signals and a diverse list of behavioral variables from freely-moving 161 
C. elegans. 162 

A probabilistic neural encoding model reveals how each C. elegans neuron encodes 163 
quantitative features of the animal’s behavior 164 

 To determine how neurons across the C. elegans brain encode the animal’s behavior, we 165 
recorded brain-wide activity and corresponding behavioral data from 14 animals as they freely 166 
explored a sparse food environment. Each recording was ~16 minutes long and we obtained data 167 
from 143 ± 12 head neurons per animal (example in Fig. 1G; Movie S1). Our objective was to 168 
precisely describe how each neuron “encodes” or “represents” the animal’s behavior, in other 169 
words how its activity is quantitatively associated with features of the animal’s behavior. Such 170 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 13, 2022. ; https://doi.org/10.1101/2022.11.11.516186doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.11.516186
http://creativecommons.org/licenses/by/4.0/


5 
 

an association could be due to a given neuron causally influencing behavior or, alternatively, 171 
receiving proprioceptive or corollary discharge signals relevant to behavior; both of these types 172 
of representations are essential for a nervous system to properly control behavior. Our initial 173 
efforts to build models of how neurons encode behavior revealed three important features of how 174 
neural activity relates to behavior that were not fully characterized in prior work. We describe 175 
these features here and provide a systematic identification of all neurons with these features 176 
below (including summary statistics across all neurons and animals; see Fig. 2). 177 

First, while examining neurons that were more active during forward or reverse velocity, 178 
we found that these neurons encode behavior over a surprisingly wide range of timescales, which 179 
had not been described before. We observed that the activity of individual neurons that encode 180 
velocity was precisely correlated with a weighted average of the animal’s recent velocity, in 181 
some cases stretching back in time as far as 30sec. Specifically, the neurons were strongly 182 
correlated with an exponentially weighted average of recent velocity. The decays of the 183 
exponentials, which determine how much a given neuron’s activity weighs past versus present 184 
velocity, varied widely across neurons (range of half-decay (𝜏!/#	): 0.9 – 31.7 sec; the half-decay 185 
of the GCaMP7f sensor in live neurons is <1 sec, and estimates of cell type variability in its 186 
decay are <2-fold; (Dana et al., 2019; Wei et al., 2020)). Fig. 1H illustrates this by showing 187 
individual neuron traces from an example animal, along with its velocity that has been convolved 188 
with exponential filters with varying decay times. Individual neurons that are strongly correlated 189 
with velocity integrated over each of these specific timescales are also shown. We also observed 190 
a broad range of timescales for neurons that encode other behavioral features (see below). These 191 
data suggest that the neurons that encode C. elegans behavior differ in how much they reflect the 192 
animal’s past versus present behavior. 193 

Second, we observed that neurons could reflect individual behaviors in a more 194 
heterogeneous fashion than expected. Focusing on velocity specifically, each neuron’s 195 
representation of velocity can be captured by a tuning curve that relates the neuron’s activity to 196 
velocity. The shapes of these tuning curves were quite different for different neurons. Some 197 
neurons displayed analog tuning, where their activity changed monotonically from fast reverse to 198 
fast forward movement (i.e. the slope of the tuning curve was the same across all velocity 199 
values). However, other neurons displayed evident “rectification”, in which the slopes of their 200 
tuning curves during reverse and forward velocity differed (Fig. 1I). Finally, many velocity-201 
encoding neurons could not be classified as “forward” or “reverse,” but instead displayed other 202 
tunings, for example encoding slow locomotion regardless of movement direction (Fig. 1I, 203 
middle). These data suggest that neurons that encode velocity can exhibit different activity 204 
profiles, reflecting overall speed, movement direction, or finely tuned aspects of an animal’s 205 
forward or reverse movement. 206 

 Third, we found that many neurons conjunctively represent multiple distinct motor 207 
programs. For example, most neurons whose activities were correlated with the oscillatory 208 
bending of the worm’s head showed different tunings to head curvature during forwards versus 209 
reverse movement. In fact, many neurons represented information about head curvature only 210 
during either forward or reverse movement. Fig. 1J shows example tuning curves of these 211 
neurons to velocity, but the datapoints are also colored based on the animal’s head curvature, 212 
which reveals the joint tuning to both motor programs (note that green and red dots are separated 213 
from each other only during positive or negative velocity values, depending on the neuron). 214 
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Similarly, many neurons conjunctively represented the animal’s velocity and feeding rate. These 215 
data suggest that a considerable number of C. elegans neurons encode multiple motor programs 216 
in combination, commonly referred to as “multiplexing” or “mixed selectivity.” 217 

Based on these observations, we next sought to construct a computational model that 218 
could be used to reveal how each neuron encodes features of the animal’s behavior. Our 219 
approach was to construct an encoding model that uses behavioral features to predict each 220 
neuron’s activity (Equation 1; see Methods for details). The form of our model was 221 
generalizable, meaning that it could be applied to any neuron in our recordings to reveal how it 222 
encodes behavior. Each neuron’s activity was modeled as an exponentially weighted average of 223 
the animal’s recent behavior with a single fit decay parameter s for each neuron, allowing for 224 
different timescale encoding. Neurons can additively weigh multiple behavioral predictor terms 225 
(based on the coefficients 𝑐% , 𝑐&' ,	and 𝑐( for velocity, head curvature, and pumping/feeding, 226 
respectively), which can each multiplicatively interact with the animal’s movement direction 227 
parameterized by 𝑐%). This allows for heterogeneous rectified and non-rectified tunings to 228 
velocity and other behavioral features, as well as multiplexing. To determine whether each of the 229 
model parameters were necessary to explain neural activity, we compared the goodness of fit of 230 
the full model to models with one parameter deleted (and to a fully linear model), and found that 231 
deletion of any parameter significantly increased the error of the model fits (Fig. S2A). We also 232 
fit more complex models (for example, a model where all behavioral predictors can 233 
multiplicatively interact with one another or models with rectification terms for other behavioral 234 
parameters), but found that this did not improve model performance. 235 

The parameters of the model are interpretable, so the model fits allow us to describe how 236 
each neuron encodes each behavioral feature. However, because the model is fit on a finite 237 
amount of neural/behavior data, these parameters have a level of uncertainty that is important to 238 
estimate. For this reason, when fitting the model for each neuron, we determined the posterior 239 
distribution of all model parameters that were consistent with our recorded data, where 240 
consistency was defined as likelihood in the context of a Gaussian process noise model 241 
parameterized by 𝜎*+,-. , 𝜎/0, and ℓ (see Methods). This allowed us to quantify our uncertainty in 242 
each model parameter and perform meaningful statistical analyses. The posterior distribution was 243 
determined using the probabilistic programming language Gen (Fig. 1L-M; Cusumano-Towner 244 
et al., 2019). We used a procedure where 100,000 particles randomly positioned in parameter 245 
space were filtered by likelihood weighting, after which a Markov Chain Monte Carlo (MCMC) 246 
process on the best particle was used to determine the posterior distribution of model parameters 247 
(Fig. 1L-M; see Methods for additional details, illustrating distinctive features of Gen that are not 248 
available in widely used probabilistic programming languages such as Stan). We confirmed the 249 
validity of this approach using simulation-based calibration, a well-known technique in 250 
computational Bayesian statistics for ensuring that MCMC approximations are sufficiently 251 
accurate (Fig. S2B; Talts et al., 2020).  252 

 253 

Equation 1: The C. elegans Probabilistic Neural Encoding Model (CePNEM) expression  254 

𝑛[𝑡] =
1

𝑠 + 1Rect
(𝑐!" , 𝑣[𝑡])	3𝑐!𝑣[𝑡] + 𝑐#$𝜃ℎ[𝑡] + 𝑐%𝑝[𝑡]7 +

𝑠
𝑠 + 1

(𝑛[𝑡 − 1] − 𝑏) + 𝑏 255 
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Rect(𝑐!" , 𝑣[𝑡]) = 	
𝑐!" + 1
:𝑐!"& + 1		

− 2
𝑐!"

:𝑐!"& + 1	
(𝑣[𝑡] < 0) 256 

Observed	neural	activity	~	𝒢𝒫:𝑛[𝑡], 𝐾12(𝜎*+,-.) + 𝐾/0(𝜎/0 , ℓ)B 257 

Parameter Meaning 

Observed neural activity Observed neural activity trace (z-scored) 

𝑣[𝑡] Observed worm velocity 

𝜃ℎ[𝑡] Observed worm head curvature 

𝑝[𝑡] Observed worm pumping rate 

𝑛[𝑡] Modeled neural activity 

Rect(𝑐%) , 𝑣[𝑡]) Locomotion direction rectification term. 
Takes on different values depending on the 
worm’s locomotion direction (whether the 
worm is moving forwards or in reverse). 

𝑐%) Locomotion direction rectification parameter. 
Determines how much the neural activity 
depends on the animal’s locomotion direction. 

𝑐% Velocity parameter 

𝑐&' Head curvature parameter 

𝑐( Feeding parameter 

𝑠 Exponentially weighted moving average 
(EWMA) timescale parameter. 

𝑏 Baseline activity parameter 

𝑛[0] Initial condition parameter 

𝜎*+,-. White noise parameter 

𝜎/0 Autocorrelative noise parameter 

ℓ Autocorrelative noise timescale parameter 

𝒢𝒫 Gaussian process 
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𝐾12 , 𝐾/0 Gaussian process kernels 

𝜏!/# Half-decay parameter that explains how far 
back in time each neuron integrates behavior. 
It is not directly included in the model, but is 
derivable from the EWMA timescale 
parameter 𝑠 and is reported below due to its 
more intuitive meaning. 

 258 

 We fit this model (The C. elegans Probabilistic Neural Encoding Model, or CePNEM) on 259 
all neurons in all recordings and found significant encoding of at least one behavioral feature in 260 
1,168 total neurons (83 ± 10 out of an average of 143 total neurons recorded per animal; 14 261 
animals total; example neurons shown in Fig. 1N; additional examples with cross validation 262 
shown in Fig. S2C; see Methods for description of statistics). We performed several control 263 
analyses to ensure that these results reflected genuine behavioral encoding, rather than motion or 264 
model fitting artifacts. First, we performed the same procedure on animals expressing pan-265 
neuronal GFP rather than pan-neuronal GCaMP. Using the same statistical criteria applied 266 
above, only 2.1% of neurons significantly encoded behavior in any of these GFP animals (versus 267 
58.6% in GCaMP datasets; Fig. S2D). We were also concerned that the model could potentially 268 
explain neural activity via overfitting, despite our efforts to calibrate the noise model (see 269 
Methods). However, we found that fitting neural activity from one animal using the behavioral 270 
features from other animals (i.e. a scrambled control) resulted in only 2.7% of neurons encoding 271 
this incorrect behavior, suggesting that the model was unable to use overfitting to explain neural 272 
activity (Fig. S2D). This is consistent with our finding that the model shows a high level of 273 
cross-validated performance, exceeding simpler versions of the model with fewer predictor terms 274 
(Fig. S2A, Fig. S2C). 275 

Finally, we examined the extent to which these model fits captured the overall variance in 276 
neural activity across the brain that was related to overt behavior. There were indeed neurons 277 
with evident calcium dynamics not well fit by CePNEM, but it was ambiguous whether these 278 
neurons encoded behavior in a manner not captured by CePNEM or, alternatively, whether their 279 
activity was related to other ongoing sensory or internal variables. To distinguish between these 280 
possibilities, we examined the model residuals, which are the neural activity across the brain 281 
unexplained by CePNEM. As a generic test to see whether these residual dynamics reflected 282 
behavior, we attempted to decode behavioral features using all neurons’ model residuals and, as 283 
a control, we also attempted to decode the same features using the original neural activity traces. 284 
As is shown in Fig. S2E, decoding from the full neural traces was highly successful, but 285 
decoding from the model residuals was close to chance levels. This was also true for behaviors 286 
not explicitly included in the model (angular velocity and body curvature), suggesting that the 287 
model was able to construct information about neural encoding of those behaviors out of the 288 
behaviors in the model (velocity, head curvature, and feeding). For example, angular velocity 289 
could be constructed by encoding head curvature over a longer timescale. While we cannot rule 290 
out that these residuals are related to a motor program that we were unaware of, these data 291 
suggest that neural variance unexplained by the model is largely unable to predict behavior. 292 
Therefore, the model captures the majority of the neural variance related to overt behavior. 293 
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 294 

Diverse representations of behavior across the C. elegans brain 295 

 We used the results of our CePNEM fits to perform a global characterization of how the 296 
full set of neurons we recorded across each animal’s brain encode its behavior. Among the 297 
recorded neurons, encoding of velocity was most prevalent, followed by head curvature and 298 
feeding (Fig. 2A). 58% of the recorded neurons encoded at least one behavior (Fig. 2B), with 299 
approximately one third of these conjunctively encoding multiple behaviors (Fig. 2B). The 300 
neurons varied in how much they weighed current versus past behavior. The majority of the 301 
neurons primarily encoded current behavior, but a sizeable subset strongly weighed past 302 
behavior (Fig. 2C; 20% of the neurons had an exponential half-decay of 𝜏!/#	 > 12.5sec, much 303 
longer than GCaMP7f sensor half-decay of <1 sec). Long timescale encoding was most 304 
prominent among forward-active velocity encoding neurons (Fig. S2G). This suggested that 305 
current neural activity may contain information about past velocity. Indeed, we found that we 306 
were able to train a linear decoder to predict prior velocity (up to at least 20 sec prior) based on 307 
current neural activity (Fig. 2D; this was not due to current velocity simply predicting past 308 
velocity, see black line in Fig. 2D). These data indicate that neurons can exhibit many different 309 
representations of past and present behavior, captured by the CePNEM model. 310 

 Using our full set of recordings and model fits, we first analyzed how velocity was 311 
represented across the full set of neurons. As described above, neurons that encode a given 312 
behavior can be tuned to that behavioral feature in a variety of ways. For example, a neuron that 313 
represents velocity could encode analog velocity, binary movement direction, and more. Using 314 
the statistical framework afforded by our fitting procedure, we determined whether each 315 
velocity-encoding neuron carried analog information about velocity during reverse and forward 316 
movement and, if so, whether the slope of its tuning was positive or negative. These slopes were 317 
computed from each possible set of model parameters from that neuron’s CePNEM fit, each of 318 
which corresponds to a particular slope value; statistical tests then checked whether the null 319 
hypothesis of zero slope could be rejected. Combining all possible reverse and forward tunings, 320 
there were eight ways that a neuron could be tuned to velocity (Fig. 2E). Most neurons (87%) 321 
exhibited rectified tunings, in which the encoding of forward and reverse speed differed. A 322 
smaller set of neurons represented velocity in a fully analog fashion and, as described above, 323 
others encoded slow locomotion. To highlight how our model fits accurately capture the 324 
dynamics of neurons with different tunings, Fig. 2H shows five different simultaneously 325 
recorded neurons that all showed higher activity during forward movement, yet their dynamics 326 
during forward and reverse behaviors are quite different (note dynamics, rise times, etc). Fig. 2H 327 
shows the CePNEM fits to each neuron, revealing how they encode velocity with different 328 
tunings and timescales. Altogether, these results show that representations of velocity are diverse 329 
among the neurons, and that CePNEM can accurately describe each of these types of 330 
representations. 331 

 We were also able to accurately model the neurons that encode head curvature, which 332 
controls the steering of the animal during navigation (Fig. 2F). We found that across the full set 333 
of recorded neurons 90% of the neurons that encoded head curvature did so in a manner that 334 
depended on movement direction (i.e. these neurons had significant encoding of both head 335 
curvature and movement direction). Thus, we categorized this full set of neurons based on both 336 
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their head curvature tuning (activity during dorsal versus ventral head bending) and velocity 337 
tuning (activity during forward versus reverse movement). Most neurons only displayed head 338 
curvature-associated activity changes during forward or reverse movement, with more neurons in 339 
the forward-rectified group (Fig. 2F; see examples in Fig. 2I). Ventral-active neurons were 340 
slightly more prevalent than dorsal-active neurons, which could be related to the ventral bias of 341 
omega bending by C. elegans (Croll, 1975). This indicates that the network that controls head 342 
steering in C. elegans is broadly impacted by the animal’s movement direction, which could 343 
relate to the asymmetry in how animals must steer during forward versus reverse movement. 344 
Note that because we examined tuning to the same range of head angles during forward and 345 
reverse movement, these differences are not simply explained by a different range of head angles 346 
being explored during forward versus reverse movement. In addition to these neurons that 347 
encode the animal’s acute head curvature, a smaller group of neurons encoded angular velocity 348 
(head curvature integrated with a half-decay parameter >5sec), sometimes in combination with 349 
the animal’s movement direction (Fig. S2F shows examples).  350 

 Neural representations of the animal’s feeding (i.e. pharyngeal pumping) rates were also 351 
diverse (Fig. 2G; examples in Fig. 2J). Many neurons displayed analog tuning to feeding rates. In 352 
addition, a separate set of neurons encoded feeding in conjunction with movement direction, 353 
such that their tuning to feeding differed depending on movement direction. Neurons could be 354 
positively or negatively correlated with feeding.  355 

 The above analyses suggest a surprising amount of heterogeneity in how C. elegans 356 
neurons encode behavior. Neurons that encode single behaviors like velocity have a wider range 357 
of tunings and timescales than was previously known, and there is more extensive combinatorial 358 
encoding than expected also. To obtain a more complete and continuous view of these different 359 
representations, we used UMAP to embed the neurons into a low-dimensional subspace, where 360 
the proximity between the neurons indicates how similarly they encoded behavior (all neurons 361 
from all animals in Fig. 3A; data from single animals embedded in the same UMAP space in Fig. 362 
S3A-B; GFP controls in Fig. S3C; median CePNEM fits only (i.e. one dot per neuron) in Fig. 363 
S3D; see Methods for details). This analysis could in principle reveal distinct clusters of cells, 364 
which would correspond to discrete subgroups of neurons that encode behavior the same way. 365 
Alternatively, the neurons could be evenly distributed in the subspace without any clusters if the 366 
representations were more heterogeneous and varied. As is shown in Fig. 3A, the neurons were 367 
diffusely distributed in the subspace, with no evident clustering. Examining where neurons with 368 
different encoding types were localized in this subspace revealed a basic organization of how 369 
neurons were arranged (Fig. 3B-E). Encoding of forward versus reverse velocity was graded 370 
along one axis, and encoding of feeding was graded along the other. Head curvature and 371 
timescale information were more distributed. The continuous, rather than clustered, nature of the 372 
distribution of neurons was especially evident when examining locations of neurons with 373 
different tuning curves. For example, neurons with different tunings to forward velocity were 374 
represented along a continuum in one region of the plot (Fig. 3F). However, UMAP projections 375 
can be sensitive to parameters, so we also examined whether neurons were clustered versus 376 
continuous using standard metrics for data clusterability. Indeed, these analyses suggested that 377 
the neurons that were not clusterable into discrete groups (Fig. S4A; optimal number of clusters 378 
was two, the minimum allowed by the metric). These results suggest that the boundaries between 379 
neurons in terms of their representation of behavior are mostly continuous rather than discrete. 380 
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Thus, rather than sorting into discrete modules, the neurons represent behavior along a 381 
continuum. 382 

 How do these diverse representations of behavior arise in the nervous system? Previous 383 
work has suggested that activity in the C. elegans nervous system can be decomposed into 384 
different modes of dynamics that are shared by neurons (Kato et al., 2015), identifiable through 385 
Principal Component Analysis (PCA). Performing PCA on our neural datasets revealed many 386 
distinct modes of dynamics: the first three PCs explained an average of 42% of the variance in 387 
neural activity and an average of 18 PCs were required to explain 75% of the variance in neural 388 
activity (Fig. S4B). While individual PCs were related to behavioral variables, there was not 389 
necessarily a clear mapping of each PC onto single behavioral variables. Neurons can be 390 
described as linear combinations of these PCs. The relative weighting of each PC by a given 391 
neuron reflects how much it expresses each of the main modes of dynamics. In principle, a given 392 
neuron could express a single mode of dynamics or complex mixtures. We found that the 393 
neurons were almost exclusively complex mixtures of many modes of dynamics (Fig. 3G-H). 394 
Moreover, the weights of the PCs on different neurons were diverse; hierarchical clustering of 395 
these data revealed very little structure, further suggesting that there were not clear subgroups of 396 
neurons with divisions between them. However, as expected, the factor loadings were still 397 
predictive of the encoding type of the neurons, suggesting that the form of behavior 398 
representation by a neuron is constructed by how it weighs the different shared modes of 399 
dynamics in the nervous system (Fig. 3G). We note that despite this complexity, these modes of 400 
dynamics and representations of behavior could still be highly stereotyped for individual neurons 401 
classes (see below). Overall, these results suggest that there are many ongoing modes of 402 
dynamics shared among neurons. The form of behavior representation by these neurons reflects 403 
which of these modes of dynamics each neuron expresses. Because each neuron carries a 404 
complex mixture of dynamics, the neurons carry distinct representations of behavior.  405 

 406 

An atlas of how the defined neuron types in the C. elegans connectome encode behavior 407 

 We next sought to map these diverse representations of behavior onto the defined cell 408 
types of the C. elegans connectome. Thus, we collected additional datasets in which we could 409 
determine the identity of each recorded neuron. In these experiments we utilized the previously 410 
described NeuroPAL transgene (Yemini et al., 2021). NeuroPAL animals express three different 411 
fluorescent proteins (NLS-BFP, NLS-OFP, and NLS-mNeptune) under well-defined genetic 412 
drivers, which makes it easy to determine neural identity based on neuron position and multi-413 
spectral fluorescence. They also express pan-neuronal NLS-TagRFP-T, but have no green 414 
fluorescence. We crossed the pan-neuronal NLS-GCaMP7f transgene to the NeuroPAL 415 
transgene (we used otIs670, a low brightness integrant of NeuroPAL shown to be phenotypically 416 
wild-type in many respects). Data were collected under the same conditions used above, except 417 
at the end of each freely-moving GCaMP recording animals were immobilized by cooling. We 418 
then collected NeuroPAL data in each fluorescent channel and registered the immobilized 419 
images back to the freely-moving images (example image in Fig. S5A).  420 

 We collected data from 12 freely-moving NeuroPAL/GCaMP7f animals. Behavior 421 
encoding was qualitatively similar in this strain, compared to the datasets described above: a 422 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 13, 2022. ; https://doi.org/10.1101/2022.11.11.516186doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.11.516186
http://creativecommons.org/licenses/by/4.0/


12 
 

similar number of neurons encoded behavior (49.5%, compared to 58.6% above), and the 423 
projections of neurons into UMAP space based on behavior encoding yielded indistinguishable 424 
results (Fig. S3B). Using NeuroPAL labels, we determined the identities of 96 ± 14 recorded 425 
neurons per animal. In total, we recorded data from 77 of the 80 neuron classes in the head. 426 
While most neuron classes are a single left/right pair of neurons, 13 of these classes consist of 427 
two or three pairs of neurons positioned in 4- or 6-fold symmetric arrangements. In such cases, 428 
we separately analyzed each of the neuron pairs, since their functions could differ (left/right pairs 429 
were pooled for all neuron classes). Thus, in total we separately analyzed the functional 430 
properties of 91 different neuron types, with an average of 11.1 neurons recorded per type. We 431 
generated CePNEM fits to all of these recorded neurons to reveal how each neuron class encodes 432 
behavior (Fig. 4A; Fig. S4B provides further explanation of how to read the atlas; Fig. S4H 433 
shows locations of many neurons in UMAP space). For neurons with previously defined 434 
encodings, our results provided a clear match to previous work: AVB, RIB, AIY, and RID 435 
encoded forward movement; AVA, RIM, and AIB encoded reverse movement; and SMDD and 436 
SMDV encoded dorsal and ventral head curvature, respectively (Gordus et al., 2015; Kaplan et 437 
al., 2020; Kato et al., 2015; Li et al., 2014; Lim et al., 2016; Luo et al., 2014; Roberts et al., 438 
2016).  439 

 This analysis revealed many new features of how the C. elegans nervous system is 440 
organized to control behavior. Although the velocity circuit has been fairly well studied, many 441 
new features still emerged (Fig. 4A, 4D). The neurons that encode forward movement displayed 442 
a wider range of rectified and non-rectified representations of velocity than was previously 443 
known, and included many neurons not previously implicated (AIM, AUA, and others). The 444 
reverse neurons were more uniform in their tunings to velocity, but several of them also 445 
represented head curvature during reverse movement (AVL, RIV), suggesting that they may 446 
control aspects of bending/turning during reverse movement. Neural representations of velocity 447 
also spanned multiple timescales. RIC, ADA, AVK, AIM, and AIY represented velocity over 448 
long timescales, showing encoding of the animal’s recent velocity over tens of seconds (half-449 
decays of 10-30s). RIC and ADA form dense synaptic outputs onto the command neurons that 450 
drive the acute forward/reverse movement of the animal (Chalfie et al., 1985; Gordus et al., 451 
2015; Kato et al., 2015; Roberts et al., 2016), suggesting that they may integrate recent behavior 452 
and influence current behavior. We silenced some of these neurons newly implicated in velocity 453 
control (AIM, RIC) and found that this indeed altered animals’ velocity, but it did not perturb 454 
head curvature or feeding behaviors, consistent with the notion that the neurons are involved in 455 
velocity control (Fig. S5C). 456 

 These data also revealed for the first time how neural activity is coordinated in the circuit 457 
that controls head steering during navigation. The neuron classes in this network are often 4-fold 458 
symmetric, consisting of separate neuron pairs that innervate the ventral and dorsal head muscles 459 
to allow for steering. These opposing dorsal and ventral neuron classes were identified as being 460 
functionally antagonistic in our analysis (Fig. 4A-C). Strikingly, our analysis showed that the 461 
neural control of head steering is dramatically different during forward versus reverse motion 462 
(Fig. 4B vs Fig. 4C). Some of the neuron classes that encode head curvature are selectively 463 
active during forward (RMED/V) or reverse (SAAV) movement. Other classes have more robust 464 
tuning to head curvature during forward movement (SMDD/V, SMBD/V). In addition, RMDD 465 
was more active during dorsal head bending during forward movement, but switched to prefer 466 
ventral head bending during reverse movement. The forward-rectified tuning of the SMD neuron 467 
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class has been previously described and matches our results (Kaplan et al., 2020). Our data here 468 
now show that this entire network shifts its functional properties depending on movement 469 
direction. This suggests that the network likely performs different sensorimotor transformations 470 
as animal steer towards a target during forward movement compared to when they move away 471 
from a target during reverse movement. Our data also show that the timescale of representation 472 
of head curvature differs among the neurons. SMD neurons encoded head bending on a rapid 473 
timescale such that their activity faithfully tracked head oscillations. However, the other classes 474 
(RME, RMD, SMB, and SAA) had longer timescale integration, such that their activity both 475 
represented acute head oscillations and longer timescale changes in dorsal/ventral bending (i.e. 476 
gradual steering signals). 477 

 We also identified other functional groups with novel features (Fig. 4D). For example, 478 
most of the neurons that encoded feeding were in the pharyngeal nervous system, but several 479 
extrapharyngeal neurons also contained information about feeding, such as RIH, AIN, and SIA. 480 
We also found that many neurons that had not been well studied in the literature had variable 481 
tunings to different motor programs that either differed across animals and/or were highly 482 
multiplexed in individual animals. These neurons (AIN, OLQ, IL1, RIH, URY, others) appear to 483 
be able to flexibly couple to different motor circuits in the animal. We confirmed that our 484 
NeuroPAL labeling procedure and our registration methods for these neurons were determined 485 
with equal confidence to the other neuron classes, suggesting that identification errors are 486 
unlikely to explain these observations (Fig. S5D,E; Fig. S5G shows example data). Further 487 
supporting this, these neurons also changed encoding over the course of individual continuous 488 
recordings (see below). These results thus identify many neuron classes in the C. elegans 489 
nervous system that can flexibly couple to different behavioral circuits. Overall, these datasets 490 
have now provided a functional map of how most neuron classes in the C. elegans nervous 491 
system encode the animal’s behavior. 492 

 493 

The encoding of behavior is dynamic in many neurons, and is influenced by the behavioral 494 
state of the animal 495 

 While examining these datasets, we noted that in several cases the encoding properties of 496 
neurons appeared to change over time in a single recording. Therefore, we systematically 497 
analyzed our data to determine whether neural representations of behavior dynamically change. 498 
To accomplish this, we fit two CePNEM models trained on the first and second halves of the 499 
same neural trace and used the Gen statistical framework to assess whether the model parameters 500 
had significantly changed between these time segments. In addition, a neuron’s encoding was 501 
only considered to have changed if another model trained on the full time range performed 502 
significantly worse on the first and seconds halves of the data, compared to the models trained on 503 
these halves (see Methods). To ensure that model overfitting would not result in the spurious 504 
detection of encoding changes, we ran this analysis on simulated neurons from our model with 505 
constant ground-truth parameters and verified that our statistical approach did not detect any 506 
changes in encoding in these simulated neurons (Fig. S6A; photobleaching was also ruled out as 507 
a contributing factor, see Fig. S6B and Methods). 508 
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 We observed that ~20% of neurons that encoded behavior changed that encoding over the 509 
course of our continuous neural recordings. Some examples of these neurons are shown in Figure 510 
5B. This suggests that a sizable portion of the C. elegans nervous system is flexible, with many 511 
neurons changing how they map onto behavior over time, even in a 16-minute recording. We 512 
found a similar fraction (14%) of neurons change encoding in the NeuroPAL strain, so we 513 
determined the ground-truth identities of these flexible neurons. This analysis revealed a set of 514 
neurons that significantly overlap with those that variably encode behavior across animals (Fig. 515 
5G, neurons on right; compare to ‘variable coupling’ neurons in Fig. 4D). This suggests that 516 
these flexible neurons can couple to different circuits and change how strongly they couple to 517 
those circuits over time. Motor neurons were unlikely to change their encoding, while sensory 518 
neurons and interneurons with high amounts of sensory input were more likely to change 519 
encoding (Fig. 5G). Moreover, specific neuron classes appeared to show different magnitudes of 520 
encoding changes: OLQD’s encoding changed drastically in some cases (Fig. 5D; Fig. 5E shows 521 
how OLQD’s encoding moved through UMAP encoding space overall, and in individual 522 
recordings), while AVE only showed low magnitude encoding changes (Fig. 5D-E) and always 523 
remained tuned to reversal. Among all the neurons, many different types of encoding changes 524 
were observed: changes in which behaviors were encoded by a neuron, including complete losses 525 
of behavior encoding and swaps in which behaviors were encoded; and more subtle changes in 526 
tuning to the same behavior (Fig. 5F). Overall, these results suggest that a defined subset of 527 
neurons in the higher layers of the C. elegans connectome can be variably coupled to behavioral 528 
circuits and remap how they couple to these circuits over time. 529 

We next sought to understand the temporal structure of these encoding changes. For 530 
instance, individual neurons could remap independently of each other, or there could be a circuit-531 
wide, temporally-synchronous shift. To address this, we developed a metric to identify when an 532 
encoding change took place. This was computed by subtracting the errors of models trained on 533 
different time regions of the same neural trace, and averaging this metric across all neurons that 534 
encode behavior in that animal (Fig. 5A and 5C, purple line; additional controls in Fig. S6C and 535 
S6D; see Methods). Sharp changes in this metric should reveal time points where the relative 536 
performance of the models change. If neurons change encoding independently, averaging across 537 
neurons will smooth out any individual encoding changes, and the metric will gradually increase. 538 
However, if there is a synchronous encoding shift across the brain, the metric will suddenly 539 
change at the time of that shift. Intriguingly, while we did observe instances of non-synchronized 540 
encoding changes (see Fig. S6E), we also observed that in many cases there was a synchronous 541 
change across many neurons (Fig. 5A, Fig. 5C). By examining our NeuroPAL datasets, we found 542 
that certain neuron classes were more likely to change encoding at the same time as one another 543 
(Fig. S6K). In addition, the number of neurons that changed encoding was positively correlated 544 
with the degree of behavioral change across the hypothesized moment of the change (Fig. S6L). 545 
Overall, these results suggest that at times there is a coordinated remapping where many neurons 546 
change how they represent behavior.  547 

These synchronous shifts in the neural encoding of behavior might reflect ongoing 548 
changes in the animal’s internal or behavioral state. Alternatively, they might be explained by a 549 
sudden change in the animal’s sensory surroundings, despite our efforts to record animals in 550 
arenas with homogeneous sensory cues. We performed additional experiments to directly test 551 
whether changing the animal’s behavioral state could elicit a synchronous encoding change 552 
across neurons. Behavioral states are typically defined as persistent changes in behavior that 553 
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outlast the sensory stimuli that initiate them (Anderson and Adolphs, 2014; Flavell et al., 2022). 554 
Previous work has shown that aversive stimuli can induce this type of behavioral change in C. 555 
elegans (Ardiel et al., 2017; Byrne Rodgers and Ryu, 2020; Chew et al., 2018). Therefore, we 556 
delivered a sudden, noxious heat stimulus to animals part way through our recordings (Figure 557 
6A,E). Specifically, we recorded 11 additional datasets in which we used a 1436-nm laser to heat 558 
the agar around the worm’s head by 10°C for 1 sec after 4-6 minutes of baseline recording (Fig. 559 
6A; temperature decayed back to baseline with a time constant of 0.39s, fully returning to 560 
baseline within 3 sec). Heat stimuli of this amplitude are known to activate the AFD, FLP, and 561 
AWC sensory neurons in immobilized animals (Kotera et al., 2016). We found that this brief, 562 
aversive stimulus elicited an immediate avoidance (reversal) behavior and a sharp reduction in 563 
feeding (Fig. 6B). Animals continued to exhibit reduced feeding rates and increased reversal 564 
rates for many minutes after the stimulus, suggesting that the transient heat stimulus induces a 565 
persistent behavioral state change (Fig. 6B). However, animals’ behavior reverted to normal 566 
within an hour and their viability was not adversely impacted by the stimulus (Fig. 6C-D). We 567 
applied our encoding change analysis to these datasets, comparing model fits from the time 568 
period prior to the stimulus to fits from a time period after the stimulus. We found that 5% of 569 
neurons radically changed their encoding of behavior at the moment of the heat stimulation, 570 
which lasted for many minutes afterwards. This number being smaller than the fraction of 571 
neurons exhibiting encoding change in our non-stimulus datasets (20%) could either be due to 572 
the stimulation evoking a smaller, stimulus-specific set of neurons to change encoding, or simply 573 
due to the fact that our model fits in heat-stimulus datasets were given a smaller amount of data, 574 
decreasing our statistical power to identify encoding changes. The types of encoding changes in 575 
response to the heat stimulus were varied: some neurons lost their coupling to behavioral circuits 576 
and went nearly silent, others suddenly displayed tuning to behavior where there was none 577 
before, and yet others displayed tuning changes (Fig. 6G). This suggests that inducing a 578 
behavioral state change elicits a shift in the network that remaps the relationship between neural 579 
activity and behavior. 580 

 581 

DISCUSSION 582 

Animals must adapt their behavior to a constantly changing environment. How neurons 583 
represent these behaviors and how these representations flexibly change in the context of the 584 
whole nervous system was unknown. To address this question, we developed new technologies 585 
to acquire high quality brain-wide activity and behavioral data. Using the probabilistic encoder 586 
model CePNEM, we constructed a brain-wide map of how each neuron precisely encodes 587 
behavior. By also determining the ground-truth identity of these neurons, we overlaid this map 588 
upon the physical wiring diagram. Behavioral information is richly expressed across the brain in 589 
many different forms – with distinct tunings, timescales, and levels of flexibility – that map onto 590 
the defined neuron classes of the C. elegans connectome.  591 

 Previous work has shown that, in both C. elegans and mammals, animal behaviors are 592 
accompanied by widespread changes in neural activity across the brain, resulting in a relatively 593 
low-dimensional neural space (Urai et al., 2022). This largely redundant distribution of 594 
information across the brain seems non-parsimonious. However, in this study, we found a new 595 
layer of complexity emerged when we examined the precise neural representations of behavior 596 
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using high-SNR datasets and new modeling approaches. We found that while representations 597 
were complex and diverse, there was a clear logic to the encoding properties of neurons. This 598 
variability in encoding could be explained in large part by three motifs: varying timescales, non-599 
linear (rectified) tunings to behavior, and conjunctive representations of multiple motor 600 
programs. Having many different forms of behavior representation present in the nervous system 601 
may confer this system with robustness and computational flexibility. Depending on the context, 602 
the brain may be able to selectively combine different representations to construct new 603 
coordinated behavioral outputs, dramatically expanding the effective computational space. In 604 
particular, the fact that there are diverse neural representations and that many neurons can remap 605 
their representations may allow the nervous system to generate a vast array of context-606 
appropriate behavioral motifs. Our recording data here did not distinguish whether a given 607 
neuron’s encoding of behavior reflected the neuron causally influencing behavior or, 608 
alternatively, receiving proprioceptive or corollary discharge signals relevant to behavior; both of 609 
these types of representations are essential for a nervous system to properly control behavior. 610 

Recent experience shapes behavior in all animals. However, how each neuron stores and 611 
uses recent historical information is poorly understood. We found that neurons can store recent 612 
motor actions with varying timescales. This allows the brain to encode the animal’s overall 613 
locomotion state at different moments in the recent past. Functionally, combining these 614 
representations with different timescales should allow the animal’s nervous system to perform 615 
computations that relate past behavior to present. We found that these representations of past 616 
behavior stretch back in time for up to a minute, but the nervous system can change over longer 617 
time scales also. In particular, we found that there is a set of neurons that can flexibly remap their 618 
relationships to behavior over many minutes. Interestingly, neurons are capable of remapping to 619 
different degrees. For example, the reversal neurons AVA and AVE are both strongly tuned to 620 
the animal’s backwards locomotion. Despite encoding the same type of information, AVA’s 621 
representation of behavior was almost completely static in our recordings whereas AVE can 622 
flexibly change its encoding. However, neurons in the sensory circuits, such as OLQ, can show 623 
even larger changes in how they encode behavior, completely switching which motor programs 624 
they encode. We found that this type of remapping occurred in a time-locked fashion in many 625 
neurons when we elicited a change in the animal’s behavioral state using a sudden aversive 626 
stimulus. This suggests that the behavioral state of the animal can remap how neurons and 627 
circuits are organized to control behavior. 628 

Our results here reveal how neurons across the C. elegans nervous system encode the 629 
animal’s behavior. Even in the narrow set of environmental conditions explored in this study, we 630 
observed that ~20% of the worm’s nervous system can flexibly remap. Future studies conducted 631 
in a wider range of contexts and states will reveal whether this comprises the core flexible subset 632 
of neurons across the worm’s nervous system or, alternatively, whether the neurons that remap 633 
will be different depending on the context or state. The degree to which brain representations of 634 
behavior are constrained by synaptic wiring versus ongoing neuromodulation remains to be seen. 635 

 636 
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STAR METHODS 658 

Key Resources Table 659 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Antibodies 
   
Bacterial and Virus Strains 
E. coli: Strain OP50 Caenorhabditis 

Genetics Center 
(CGC) 

OP50 

Chemicals, Peptides, and Recombinant Proteins 
Rhodamine 110 Millipore Sigma Cat#83695 
Rhodamine B Millipore Sigma Cat#83689 
Experimental Models: Organisms/Strains 
C. elegans: flvIs17[tag-168::NLS-GCaMP7F, gcy-
28.d::NLS-tag-RFPt, ceh-36:NLS-tag-RFPt, inx-1::tag-
RFPt, mod-1::tag-RFPt, tph-1(short)::NLS-tag-
RFPt, gcy-5::NLS-tag-RFPt, gcy-7::NLS-tag-RFPt]; 
flvIs18[tag-168::NLS-mNeptune2.5]; lite-1(ce314); gur-
3(ok2245) 

This paper SWF415 
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C. elegans: flvIs17; otIs670 [low-brightness 
NeuroPAL]; lite-1(ce314); gur-3(ok2245) 

This paper SWF702 

C. elegans: flvEx450[eat-4::NLS-GFP, tag-168::NLS-
mNeptune2.5]; lite-1(ce314); gur-3(ok2245) 

This paper SWF360 

C. elegans: flvEx451[tag-168::NLS-GFP, tag-168::NLS-
mNeptune2.5]; lite-1(ce314); gur-3(ok2245) 

This paper SWF467 

C. elegans: flvEx207[nlp-70::HisCl1, elt-2::nGFP] This paper SWF515 
C. elegans: flvEx301[tbh-1::TeTx::sl2-mCherry, elt-
2::nGFP] 

This paper SWF688 

Recombinant DNA 
pSF300[tag-168::NLS-GCaMP7F] This paper pSF300 
pSF301[tag-168::NLS-mNeptune2.5] This paper pSF301 
pSF302[tag-168::NLS-GFP] This paper pSF302 
pSF303[tag-168::NLS-tag-RFPt] This paper pSF303 
Software and Algorithms 
NIS-Elements (v4.51.01) Nikon https://www.nikoninstruments. 

com/products/software 
Other 
Zyla 4.2 Plus sCMOS camera Andor N/A 
Ti-E Inverted Microscope Nikon N/A 

 660 

List of key software packages used 661 

Gen.jl, PyPlot.jl, PyCall.jl, HDF5.jl, ProgressMeter.jl, Distributions.jl, Images.jl, NLopt.jl, DelimitedFiles.jl, 662 
NaNMath.jl, Clustering.jl, DataStructures.jl, Interpolations.jl, MultivariateStats.jl, Optim.jl, TotalVariation.jl, 663 
UMAP.jl, Lasso.jl, VideoIO.jl, Impute.jl, JLD2.jl, JSON.jl LsqFit.jl, MLBase.jl, ImageTransformations.jl, 664 
HypothesisTests.jl, MultipleTesting.jl, GLM.jl, GLMNet.jl, ForwardDiff.jl, FFTW.jl, Distances.jl, DSP.jl, 665 
CoordinateTransformations.jl, Combinatorics.jl, Colors.jl, ColorTypes.jl, Cairo.jl, CUDA.jl 666 

 667 

Lead Contact statement 668 

Further information and requests for resources and reagents should be directed to and will be 669 
fulfilled by the lead contact, Steven Flavell (flavell@mit.edu). 670 

 671 

Materials availability statement 672 

All plasmids, strains, and other reagents generated in this study are freely available upon request. 673 

 674 

Data and code availability statement 675 

The code used for microscope control, image processing, and data analysis is openly available at 676 
https://www.dropbox.com/s/3e5qnzam2xvdf4f/code.zip?dl=0 677 

 678 
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Recordings of neural activity and behavior 679 

Transgenic animals 680 

Four transgenic strains were recorded in this study, as described in the text. The first (SWF415) 681 
contained two integrated transgenes: (1) flvIs17: tag-168::NLS-GCaMP7f, along with NLS-682 
TagRFP-T expressed under the followed promoters: gcy-28.d, ceh-36, inx-1, mod-1, tph-1(short), 683 
gcy-5, gcy-7; and (2) flvIs18: tag-168::NLS-mNeptune2.5. The second strain we recorded 684 
(SWF702) contained two integrated transgenes: (1) flvIs17: described above; and (2) otIs670: 685 
low-brightness NeuroPAL (Yemini et al., 2021). Strains were backcrossed 5 generations after 686 
integration events. The third and fourth strains are non-integrated transgenic strains expressing 687 
NLS-GFP and NLS-mNeptune2.5 in defined neurons, listed in the Key Resources Table 688 
(SWF360 and SWF467). 689 

Microscope 690 

Animals were recorded under a dual light-path microscope that is similar though not identical to 691 
one that we have previously described (Ji et al., 2021). The light path used to image GCaMP, 692 
mNeptune, and the fluorophores in NeuroPAL at single cell resolution is an Andor spinning disk 693 
confocal system with Nikon ECLIPSE Ti microscope. Light supplied from a 150 mW 488 nm 694 
laser, 50 mW 560 nm laser, 100 mW 405 nm laser, or 140 mW 637 nm laser passes through a 695 
5000 rpm Yokogawa CSU-X1 spinning disk unit with a Borealis upgrade (with a dual-camera 696 
configuration). A 40x water immersion objective (CFI APO LWD 40X WI 1.15 NA LAMBDA 697 
S, Nikon) with an objective piezo (P-726 PIFOC, Physik Instrumente (PI)) was used to image the 698 
volume of the worm’s head (a Newport NP0140SG objective piezo was used in a subset of the 699 
recordings). A custom quad dichroic mirror directed light emitted from the specimen to two 700 
separate sCMOS cameras (Zyla 4.2 PLUS sCMOS, Andor), which had in-line emission filters 701 
(525/50 for GCaMP/GFP, and 610 longpass for mNeptune2.5; NeuroPAL filters described 702 
below). Data was collected at 3 × 3 binning in a 322 × 210 region of interest in the center of the 703 
field of view, with 80 z planes collected at a spacing of 0.54 um. This resulted in a volume rate 704 
of 1.7 Hz (1.4 Hz for the datasets acquired with the Newport piezo). 705 

The light path used to image behavior was in a reflected brightfield (NIR) configuration. Light 706 
supplied by an 850-nm LED (M850L3, Thorlabs) was collimated and passed through an 850/10 707 
bandpass filter (FBH850-10, Thorlabs). Illumination light was reflected towards the sample by a 708 
half mirror and was focused on the sample through a 10x objective (CFI Plan Fluor 10x, Nikon). 709 
The image from the sample passed through the half mirror and was filtered by another 850-nm 710 
bandpass filter of the same model. The image was captured by a CMOS camera (BFS-U3-711 
28S5M-C, FLIR). 712 

A closed-loop tracking system was implemented in the following fashion. The NIR brightfield 713 
images were analyzed at a rate of 40 Hz to determine the location of the worm’s head. To 714 
determine this location, the image at each time point is cropped and then analyzed via a custom-715 
trained network with transfer learning using DeepLabCut (Mathis et al., 2018) that identified the 716 
location of three key points in the worm’s head (nose, metacorpus of pharynx, and grinder of 717 
pharynx). The tracking target was determined to be halfway between the metacorpus and grinder 718 
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(central location of neuronal cell bodies). Given the target location and the error, the PID 719 
controller configured in disturbance rejection sends velocity commands to the stage to cancel out 720 
the motion. This permitted stable tracking of the C. elegans head. 721 

Mounting and recording 722 

L4 worms were picked 18-22 hours before the imaging experiment to a new NGM agar plate 723 
seeded with OP50 to ensure that we recorded one day-old adult animals. A concentrated OP50 724 
culture to be used in the mounting buffer for the worm was inoculated 18h before the experiment 725 
and cultured in a 37C shaking incubator. After 18h of incubation, 1mL of the OP50 culture was 726 
pelleted, then resuspended in 40uL of M9. This was used as the mounting buffer.  Before each 727 
recording, we made a thin, flat agar pad (2.5cm x 1.8cm x 0.8mm) with NGM containing 2% 728 
agar. On the 4 corners of the agar pad, we placed a single layer of microbeads with a diameter of 729 
80um to alleviate the pressure of the coverslip on the worm. Then a worm was picked to the 730 
middle of the agar pad, and 9.5uL of the mounting buffer was added on top of the animal. 731 
Finally, a glass coverslip (#1.5) was added on top of the worm. This caused the mounting buffer 732 
to spread evenly across the slide. We waited for 5 minutes after mounting the animal before 733 
imaging.  734 

Procedure for NeuroPAL imaging 735 

For NeuroPAL recordings, animals were imaged as described above, but they were subsequently 736 
immobilized by cooling, after which multi-spectral information was captured. The slide was 737 
mounted back on the confocal with a thermo-electric cooling element attached to it, set to cool 738 
the agar temperature to 4°C (Wang et al., 2022). A closed-loop temperature controller 739 
(TEC200C, Thorlabs) with a micro-thermistor (SC30F103A, Amphenol) embedded in the agar 740 
kept the agar temperature at the 1 °C set point. Once the temperature reached the set point, we 741 
waited 5 minutes for the worm to be fully immobilized before imaging. Details on exactly which 742 
multi-spectral images were collected are in the NeuroPAL annotation section below. 743 

Heat stimulation 744 

For experiments involving heat stimulation, animals were recorded using the procedure 745 
described above, but were stimulated with a 1436-nm 500-mW laser (BL1436-PAG500, 746 
Thorlabs) a single time 4 or 6 min into the recording. The laser was controlled by a driver 747 
(LDC220C, Thorlabs) and cooled by the built-in TEC controller and a temperature controller 748 
(TED200C, Thorlabs). The light emitted by the laser fiber was collimated by a collimator 749 
(CFC8-C, Thorlabs) and expanded to be about 600 um at the sample plane. The laser light was 750 
fed into the NIR brightfield path via a dichroic with 1180-nm cutoff (DMSP1180R, Thorlabs). 751 
We determined the amplitude and kinetics of the heat stimulus in calibration experiments where 752 
temperature was determined based on the relative intensities of rhodamine 110 (temperature-753 
insensitive) and rhodamine B (temperature-sensitive). This procedure was necessary because the 754 
thermistor size was considerably larger than the 1436-nm illumination spot, so it could not 755 
provide a precise measurement of temperature within the spot. Slides exactly matching our worm 756 
imaging slides were prepared with dyes added (and without worms). Dyes were suspended in 757 
water at 500mg/L and diluted into both agar and mounting buffer at a 1:100 dilution (final 758 
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concentration of 5mg/L). Rhodamine 110 was imaged using a 510/20 bandpass filter and 759 
rhodamine B was imaged was 610LP filter. We recorded data using the confocal light path 760 
during a calibration procedure where a heating element ramped the temperature of the entire agar 761 
pad from room temp to >50°C. Temperature was simultaneously recorded via a thermistor 762 
embedded on the surface of the agar, approximating the position of the worm. Fluorescence was 763 
also recorded at the same time, at the precise position where the worm’s head is imaged. This 764 
yielded a calibration curve that mapped the ratio of Rhodamine B/Rhodamine 110 intensity at the 765 
site of the worm’s head onto precise temperatures. Slides were then stimulated with the 1436-nm 766 
laser using identical setting to the experiments with animals. The response profile of the ratio of 767 
the fluorescent dyes was then converted to temperature. We quantitatively characterized the 768 
change in temperature, noting the mean temperature over the first second of stimulation (set to be 769 
exactly 10.0°C) and its decay (0.39 sec exponential decay rate, such that it returns to baseline 770 
within 3sec). 771 

 772 

Extraction of behavioral parameters from NIR videos 773 

 We quantified behavioral parameters of recorded animals by analyzing the NIR 774 
brightfield recordings. All of these behaviors are initially computed at the NIR frame rate of 775 
20Hz, and then transformed into the confocal time frame using camera timestamps, averaging 776 
together all of the NIR data corresponding to each confocal frame. 777 

Velocity 778 

First, we read out the (x,y) position of the stage (in mm) as it tracks the worm. To 779 
account for any delay between the worm’s motion and stage tracking, at each time point we 780 
added the distance from the center of the image (corresponding to the stage position) to the 781 
position of the metacorpus of pharynx (detected from our neural network used in tracking). This 782 
then gave us the position of the metacorpus over time. To decrease the noise level (eg: from 783 
neural network and stage jitter), we then applied a Group Sparse Total Variation Denoising 784 
algorithm to the metacorpus position. Differentiating the metacorpus position then gives us a 785 
movement vector of the animal. 786 

Because this movement vector was computed from the location of the metacorpus, it 787 
contains two components of movement: the animal’s velocity in its direction of motion, and 788 
oscillations of the animal’s head perpendicular to that direction. To filter out these oscillations, 789 
we projected the movement vector onto the animal’s facing direction, i.e. the vector from the 790 
grinder of the pharynx to its metacorpus (computed from the stage-tracking neural network 791 
output). The result of this projection is a signed scalar, which is reported as the animal’s velocity. 792 

Worm spline and body angle computation 793 

To generate curvature variables, we trained a 2D U-Net to detect the worm from the NIR 794 
images. Specifically, this network performs semantic segmentation to mark the pixels that 795 
correspond to the worm. To ensure consistent results if the worm intersects itself (for instance, 796 
during an omega-turn), we use information from worm postures at recent timepoints to compute 797 
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where a self-intersection occurred, and mask it out. Next, we compute the medial axis of the 798 
segmented and masked image and fit a spline to it. Since the tracking neural network was more 799 
accurate at detecting the exact position of the worm’s nose, we set the first point of the spline to 800 
the point closest to the tracking neural network’s nose position. We next compute a set of points 801 
along the worm’s spline with consistent spacing (8.85 µm along the spline) across time points, 802 
with the first point at the first position on the spline. Body angles are computed as the angles	that 803 
vectors 𝜃,,,4! between adjacent points make with the 𝑥-axis; for example, the first body angle 804 

would be the angle that the vector 𝜃!,# between the first and second point makes with the 𝑥-axis, 805 

the second body angle would be  𝜃#,5, and so on. 806 

Head curvature 807 

Head curvature is computed as the angle between the points 1, 5, and 8 (ie: the angle 808 
between 𝜃!,6 and 𝜃6,7). These points are 0 µm, 35.4 µm, and 61.9 µm along the worm’s spline, 809 
respectively. 810 

Angular velocity 811 

Angular velocity is computed as smoothed 8&
99⃗ '(
8;

, which is computed with a linear 812 

Savitzky-Golay filter with a width of 300 time points (15 seconds) centered on the current time 813 
point.  814 

Body curvature 815 

Body curvature is computed as the standard deviation of 𝜃,,,4! for 𝑖 between 1 and 31 (ie: 816 
going up to 265 µm along the worm’s spline). This value was selected such that this length of the 817 
animal would almost never be cropped out of the NIR camera’s field of view. To ensure that 818 
these angles are continuous in 𝑖, they may each have 2𝜋 added or subtracted as appropriate. 819 

Feeding (pumping rate) 820 

Pumping rate was manually annotated using Datavyu, by counting each pumping stroke 821 
while watching videos slowed down the 25% of their real-time speeds. The rate is then filtered 822 
via a moving average with a width of 80 time points (4 seconds) to smoothen the trace into a 823 
pumping rate rather than individual pumping strokes. 824 

Extraction of normalized GCaMP traces from confocal images 825 

We developed the Automatic Neuron Tracking System for Unconstrained Nematodes 826 
(ANTSUN) software pipeline to extract neural activity (normalized GCaMP) from the confocal 827 
data consisting of a time series of z-stacks of two channels (TagRFP-T or mNeptune2.5 for the 828 
marker channel and GCaMP7f for the neural activity channel). Each processing step is outlined 829 
below. 830 

Pre-processing 831 
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The raw images first go through several pre-processing steps before registration and trace 832 
extraction. For datasets with a gap in the middle, all of the following processing is done 833 
separately and independently on each half of the dataset. 834 

Shear correction. Shear correction is performed on the marker channel, and the same 835 
parameters are also used to transform the activity channel.  Since the images in a z-stack are 836 
acquired over time, there exists some translation across the images within the same z-stack, 837 
causing some shearing. To resolve this, we wrote a custom GPU accelerated version of the FFT 838 
based subpixel alignment algorithm (Guizar-Sicairos et al., 2008). Using the alignment 839 
algorithm, each successive image pair is aligned with x/y-axis translations. 840 

Image cropping. We crop the z-stacks to remove the irrelevant non-neuron pixels. For 841 
each z-stack in the time series, the shear-corrected stack is first binarized by thresholding 842 
intensity. Using principal component analysis on the binarized worm pixels, the rotation angle 843 
about the z-axis is determined. Then the stack is rotated about the z-axis with the determined 844 
angle to align the worm’s head. Then the 3D bounding box is determined using the list of worm 845 
pixels after the rotation. Finally, the rotated z-stack is cropped using the determined 3D bounding 846 
box. Similar to shear correction, this procedure is first done on the marker channel, and the same 847 
parameters are then applied to the activity channel. 848 

Image filtering using total variation minimization.  To filter out noise on the marker 849 
channel images, we wrote a custom GPU accelerated version of the total variation minimization 850 
filtering method, commonly known as the ROF model (Rudin et al., 1992). This method excels 851 
at filtering out noises while preserving the sharp edges in the images. Note that the activity 852 
channel is kept unfiltered for GCaMP extraction. 853 

Registering volumes across time points 854 

To match the neurons across the time series, we register the processed z-stacks across 855 
time points. However, simply registering all time points to a single fixed time point is intractable 856 
because of the high amount of both global and small-scale deformations. To resolve this, we 857 
compute a similarity metric across all possible time point pairs that reports the similarity of 858 
worm postures. We then use this metric to construct a registration graph where nodes are 859 
timepoints and edges are added between timepoints with high posture similarity. The graph is 860 
constrained to be fully connected with an average connectedness of 10. Therefore, it is possible 861 
to fully link each time point to every other time point. Using this graph, we register strategically 862 
chosen pairs of z-stacks from different time points (i.e. the ones with edges). The details of the 863 
procedure are outlined below. 864 

Posture similarity determination. For each z-stack, we first find the anterior tip of the 865 
animal using a custom trained 2D U-Net, which outputs the probability map of the anterior tip 866 
given a maximum intensity projection of the z-stack. We then fit a spline across the centerline of 867 
the neuron pixels beginning at the determined anterior tip, which is the centroid of the U-Net 868 
prediction. Using the spline, we compare across time points pairs to determine the similarity. 869 
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Image registration graph construction. Next, we construct a graph of registration 870 
problems, with time points as vertices. For each time point, an edge is added to the graph 871 
between that time point and each of the ten time points with highest similarity to it. The graph is 872 
then checked for being connected. 873 

Image registration. For each registration problem from the graph, we perform a series of 874 
registrations that align the volumes, iteratively in multiple steps in increasing complexity: Euler 875 
(rotation and translation), affine (linear deformation), and B-spline (non-linear deformation). In 876 
particular, the B-spline registration is performed in three scales, decreasing from global (the 877 
control points are farther apart) to local (the control points are placed closer together) 878 
registration. The image registrations and transformations are performed using elastix on 879 
OpenMind, a high-performance computing cluster. They are performed on the mNeptune2.5 880 
marker channel. 881 

Channel alignment registration 882 

To align the two cameras used to acquire the marker and the activity channels, we 883 
perform Euler (translation and rotation) registration across the two channels over all time points. 884 
Then we average the determined transformation parameters from the different time points and 885 
apply across all time points. 886 

Neuron ROI determination 887 

To segment out the pixels and find the neuron ROIs, we first use a custom trained 3D U-888 
Net. The instance segmentation results from the U-Net are further refined with the watershed 889 
algorithm. 890 

Simultaneous semantic and instance segmentation with 3D U-Net.  We trained a 3D U-891 
Net to simultaneously perform semantic and instance segmentation of the neuronal ROIs in the 892 
z-stacks of the unfiltered marker images. To achieve instance segmentation, we labeled and 893 
assigned high weights to the boundary pixels of the neurons, which guides the network to learn 894 
to segment out the boundaries and separate out neighboring neurons. Given a z-stack, the 895 
network outputs the probability of each pixel being a neuron. We threshold and binarize this 896 
probability volume to mark pixels that are neurons. 897 

Instance segmentation refinement. To refine the instance segmentation results from the 898 
3D U-Net, we perform instance segmentation using the watershed algorithm. This generates, for 899 
each time point, a set of ROIs in the marker image corresponding to distinct neurons. 900 

Neural trace extraction  901 

 ROI Similarity Matrix. To link neurons over time, we first create a symmetric 𝑁 × 𝑁 902 
similarity matrix, where 𝑁 is the number of total ROIs detected by our instance segmentation 903 
algorithm across all time points. Thus, for each index 𝑖 ∈ 1:𝑁 in this matrix, we can define the 904 
corresponding time point 𝑡, and the corresponding ROI 𝑟, from that time point. This matrix is 905 
sparse, as its (𝑖, 𝑗)th entry is nonzero only if there was a registration between 𝑡, and 𝑡< that maps 906 
the ROI 𝑟, to 𝑟<. In the case of such a registration existing, the (𝑖, 𝑗)th entry of the matrix is set to 907 
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a heuristic intended to estimate confidence that the ROIs 𝑟, and 𝑟< are actually the same neuron at 908 
different timepoints. This heuristic includes information about the quality of the registration 909 
mapping 𝑟, to 𝑟< (computed using Normalized Correlation Coefficient), the fractional volume of 910 
overlap between the registration-mapped 𝑟, and 𝑟< (i.e. position similarity),  the difference in 911 
marker expression between 𝑟, and 𝑟< (i.e. similarity of mNeptune expression), and the fractional 912 
difference in volume between 𝑟, and 𝑟< (i.e. size similarity of ROIs). The diagonal of the matrix 913 
is additionally set to a nonzero value.  914 

 Clustering the Similarity Matrix.  Next, we cluster the rows of this similarity matrix using 915 
a custom clustering method; each resulting cluster then corresponds to a neuron. First, we 916 
construct a distance matrix between rows of the similarity matrix using L2 Euclidean distance. 917 
Next, we apply minimum linkage hierarchical clustering to this distance matrix, except that after 918 
a merge is proposed, the resulting cluster is checked for ROIs belonging to the same time point. 919 
If too many ROIs in the resulting cluster belong to the same time point, that would signify an 920 
incorrect merge, since neurons should not have multiple different ROIs at the same time point. 921 
Thus, if that happens, the algorithm does not apply that merge, and continues with the next-best 922 
merge. This continues until the algorithm’s next best merge reaches a merge quality threshold, at 923 
which point it is terminated, and the clusters are returned. These clusters define the grouping of 924 
ROIs into neurons. 925 

Linking multiple datasets. For datasets that were recorded with a gap in the middle, the 926 
above process was performed separately on each half of the data. Then, the above process was 927 
repeated to link the two halves of the data together, except that only two edges that must connect 928 
to the other half of the data are added to the registration graph per time point, and the clustering 929 
algorithm does not merge clusters beyond size 2.  930 

 Trace extraction. Next, neural traces are extracted from each ROI in each time point 931 
belonging to that neuron’s cluster. Specifically, we obtain the mean of the pixels in the ROI at 932 
that time point. This is done in both the marker and activity channels. They are then put through 933 
the following series of processing steps: 934 

• Background-subtraction, using the median background per channel per time point. 935 
• Deletion of neurons with too low of signal in the activity channel (mean activity lower 936 

than the background), or too few ROIs corresponding to them (less than half of the total 937 
number of time points). 938 

• Correction to account for laser intensity changing halfway through our recording sessions 939 
(done separately on each channel based on intensity calibration measurements taken at 940 
various values of laser power). 941 

• Linear interpolation to any time point that lacked an ROI in the cluster. 942 
• Division of the activity channel traces by the marker channel traces, to filter out various 943 

types of motion artifacts. These divided traces are the neural activity traces.  944 

 Bleach correction. We then compute the mean neural activity (averaged across all 945 
neurons) over the entire time range, and fit a one-parameter exponential bleaching model to it. 946 
The bleaching model was initialized such that it had value equal to the median neural activity 947 
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value at the median time point, and it was fit using log-MSE error to the averaged neural activity 948 
value. A small number of datasets with very high bleaching (determined using the exponential 949 
decay parameter of the bleaching model) were excluded from all analysis. Each neural activity 950 
trace is then divided by the best-fit bleaching curve; the resulting traces are referred to as 𝐹. In 951 

our SWF360 analysis, we refer directly to 𝐹; the trace heatmaps shown in this paper are =
=()

 952 

(where 𝐹#> is the 20th percentile, computed separately for each neuron); we also display z-scored 953 
neural activity in many figure panels, as indicated; and the CePNEM models are fit by z-scoring 954 
each neuron separately. 955 

 Controls to test whether neurons are correctly linked over time. We ran a control to test 956 
whether neurons were being mismatched by our registration process. We did this by processing 957 
data from our SWF360 strain that expresses GFP at different levels in different neurons (eat-958 
4::NLS-GFP). The recording was made with a gap and was processed identically to GCaMP 959 
datasets with gaps in the middle, thus also serving as a test of inter-gap registration. This 960 
SWF360 recording allows us to detect errors in neuron registration, since GFP-negative neuron 961 
could briefly become GFP-positive or vice versa. We quantified this by setting a threshold of 962 
median(𝐹) > 1.5 to call a neuron a GFP neuron. This threshold resulted in Frac?@A = 27% of 963 
neurons being quantified as containing GFP, which is about what was expected for the promotors 964 
expressed. Then, for each neuron, we quantified the number of time points such that the neuron’s 965 
activity 𝐹 at that time point differed from its median by more than 1.5, and exactly one of [the 966 
neuron’s activity at that time point] and [its median activity] was larger than 1.5. These time 967 
points represent mismatches, since they correspond to GFP-negative neurons that were 968 
mismatched to GFP-positive neurons (if the neuron’s activity increased at the time point) or vice 969 
versa (if its activity decreased). We then computed an error rate of 970 

BCDEFG	HI	DJKDLMNOFP	MJDF	QHJBMK
(BCDEFG	HI	MHMLS	MJDF	QHJBMK)⋅#⋅@GLN*+,⋅(!V@GLN*+,)

 as an estimate of the mis-registration rate of our 971 

pipeline. The 2 ⋅ Frac?@A ⋅ (1 − Frac?@A) term corrects for the fact that mis-registration errors 972 
that send GFP-negative to other GFP-negative neurons, or GFP-positive to other GFP-positive 973 
neurons, would otherwise not be detected by this analysis. This error rate came out to 0.3%, so 974 
we conclude that artifacts resulting from mismatched neurons are a negligible component of our 975 
data.  976 

 977 

Annotation of neural identities using NeuroPAL 978 

The identities of neurons were determined via NeuroPAL using the following procedure. 979 
We obtained a series of images from each recorded animal, while the animal was immobilized 980 
after the freely-moving GCaMP recording (recording and immobilization procedures described 981 
above):  982 

(1-3) Spectrally isolated images of mTagBFP2, CyOFP1, and mNeptune2.5. We excited 983 
CyOFP1 using the 488nm laser at 32% intensity under a 585/40 bandpass filter. mNeptune2.5 984 
was recorded next using a 637nm laser at 48% intensity under a 655LP-TRF filter, in order to not 985 
contaminate this recording with TagRFP-T emission. Finally, mTagBFP2 was isolated using a 986 
405nm laser at 27% intensity under a 447/60 bandpass filter.  987 
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(4) An image with TagRFP-T, CyOFP1, and mNeptune2.5 (all of the “red” markers) in 988 
one channel, and GCaMP7f in the other channel. As described below, this image was used for 989 
neuronal segmentation and registration with both the freely moving recording and individually 990 
isolated marker images. We excited TagRFP-T and mNeptune2.5 via 561nm laser at 15% 991 
intensity and CyOFP1 and GCaMP6f via 488nm laser at 17% intensity. TagRFP-T, 992 
mNeptune2.5, and CyOFP1 were imaged with a 570LP filter and GCaMP6f was isolated using a 993 
525/50 bandpass filter.  994 

All isolated images were recorded for 60 timepoints. We increased the signal to noise 995 
ratio for each of the images by first registering all timepoints within a recording to one another 996 
and then averaging the transformed images. Finally, we created the composite, 3-dimensional 997 
RGB image by setting the mTagBFP2 image to blue, CyOFP1 image to green, and mNeptune2.5 998 
image to red as done by Yemini et al. (2021) and manually adjusting the intensity of each 999 
channel to optimally match their manual.  1000 

The neuron segmentation U-Net was run on the “all red” image and we then determined 1001 
the identities of U-net identified neurons using the NeuroPAL instructions. The landmarks in the 1002 
NeuroPAL atlas were identified first and the identities of the remaining neurons were 1003 
subsequently determined by comparing the individual channel intensities, overall coloring, and 1004 
relative positioning of the cells. In some cases, neuronal identities could not be determined with 1005 
certainty due a number of factors including: unexpectedly dim expression of one or more 1006 
fluorophores, unexpected expression of a fluorophore in cells not stated to express a given 1007 
marker, and extra cells in a region expressing similar intensities when no other cells are 1008 
expected. Rarely, multiple cells were labeled as potential candidates for a given neuron and the 1009 
most likely candidate (based on position, coloring, and marker intensity) was used for analysis. If 1010 
a cell was not bright enough to be distinguished from its neighbors or was undetected by the 1011 
neuron segmentation U-Net, we left it unlabeled.  1012 

Finally, the neural identity labels from the RGB image were mapped back to the GCaMP 1013 
traces from the freely-moving animal by first registering each fluorophore-isolated image to the 1014 
image containing all of the red markers. The “all red” image was then registered back to the 1015 
freely moving recording, permitting mapping of neuronal labels back to GCaMP traces. 1016 
 1017 

Decoding behavior from neural activity 1018 

Full activity, current behavior 1019 

 We trained L1-regularized linear decoder models to predict the worm’s current velocity, 1020 
head curvature, feeding rate, angular velocity, and body curvature based on its current (z-scored) 1021 
neural activity. To set the regularization parameter, we withheld three datasets that were 1022 
randomly selected from the set of datasets with feeding standard deviation of at least 0.5. The 1023 
other eleven datasets were used to evaluate decoder performance. The decoders were evaluated 1024 
using five-fold cross-validation splits. All behaviors were z-scored for the decoder, and the 1025 
decoder accuracy is reported as one minus the MSE between the decoder’s prediction and actual 1026 
behavior, evaluated on the test-time data. 1027 

Model residuals, current behavior 1028 

 We computed model residuals for each neuron by taking that neuron’s activity and 1029 
subtracting the modeled 𝑛[𝑡] (computed based off of the median of all posterior CePNEM 1030 
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parameters for that neuron), and then z-scoring the resulting residual trace. We then trained 1031 
separate decoder models using the same procedure as above, except using the model residuals 1032 
instead of neural activity. We regularized these decoders separately using the same three set-1033 
aside datasets. 1034 

Decoding past behavior (Figure 2D) 1035 

We trained linear decoder models to predict the average velocity of the worm at time 1036 
points in the past, based on the worm’s current (z-scored) neural activity; only neurons that 1037 
encoded velocity were included. The models were trained on data from all 14 SWF415 animals. 1038 
A separate model was trained for each time point in the past. The average velocity was computed 1039 
in the window spanning (Δt − 8, Δ𝑡 + 8] where Δ𝑡 is the number of time points into the past 1040 
(Δ𝑡 = 0 is current). This approximately corresponds to a 10-sec time window. Velocity across 1041 
the full 1600 time points was z-scored before being averaged. Each dataset was split into 5 1042 
segments for cross-validation, with 100-timepoint gaps in between to prevent the training time 1043 
information from spilling over to the test time segment. The models were regularized using an 1044 
elastic net (L1 and L2).  1045 

As a control, separate models were trained that attempted to predict shifted velocity, 1046 
which should scramble the relationship between neural activity and behavior. Velocity was 1047 
circularly shifted by an amount between 125 and 600 time points, and, additionally, shifts that 1048 
would result in a correlation of greater than 0.2 with actual velocity were discarded. 50 such 1049 
decoders were trained, each using a different, randomly-selected shift. The performance of the 1050 
decoder trained to predict averaged velocity Δ𝑡 time points into the past was then defined as the 1051 
difference between the cost (square root of MSE) of that decoder and the average cost of each of 1052 
the 50 decoders trained on shifted velocity.  1053 

To ensure that decoder performance based on neural activity with Δ𝑡 > 0 was actually a 1054 
representation of historical velocity information, and not simply due to the autocorrelative nature 1055 
of velocity, a separate family of decoders were trained that was given the worm’s current (z-1056 
scored) velocity as input instead of neural activity. The error of those decoders to their shifted 1057 
controls is also displayed in Figure 2D. Finally, to estimate the maximum possible performance 1058 
of these decoder models, separate “perfect” decoders were trained that were given the worm’s (z-1059 
scored) velocity at time points 𝑡 + Δ𝑡 for each value of Δ𝑡 ∈ (−8, 108), and were then subjected 1060 
to the same shift test. 1061 

C. elegans Probabilistic Neural Encoding Model (CePNEM) 1062 

Fitting procedure 1063 

 Overview of fitting approach.  Let N be a neural trace from an animal, B be the behaviors 1064 
of that animal, and X be the model parameters that we are trying to fit. Then the goal our model 1065 
fitting procedure is to estimate the probability distribution of model parameters given our 1066 
observations, namely P(X|N, B). Our model defines the likelihood P(N|X, B) – that is, the 1067 
likelihood of observing a set of neural data given a set of model parameters and behavioral data. 1068 
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Our prior distributions define P(X|B); in this case, our prior distributions on model parameters 1069 
are independent of the animal’s behaviors, so P(X|B) = P(X). Therefore, by Bayes’ rule,  1070 

𝑃(𝑋|𝑁, 𝐵) =
𝑃(𝑁|𝑋, 𝐵)𝑃(𝑋)

𝑃(𝑁|𝐵)  1071 

 Unfortunately, 𝑃(𝑁|𝐵) is difficult to compute. Crucially, however, it does not depend on 1072 
the model parameters 𝑋. This means that by comparing the value of 𝑃(𝑁|𝑋, 𝐵)𝑃(𝑋) for different 1073 
values of 𝑋, we can make meaningful insights into the distribution of 𝑃(𝑋|𝑁, 𝐵). In particular, 1074 
we can define a Markov chain that defines a sequence of 𝑋;, where 𝑋;4! is a stochastic “proposal 1075 
function” of 𝑋;. The idea is that the proposal function can be biased to walk toward regions in 1076 
parameter space with higher likelihood. Indeed, there are a family of algorithms, such as 1077 
Metropolis-Hastings (Hastings, 1970) and Hamiltonian Monte Carlo (Neal, 2011) that define 1078 
such proposal functions. In particular, the proposal functions defined by these algorithms have 1079 
the property that, in the limit of generating an infinitely long Markov chain, sampling from the 1080 
chain is equivalent to sampling from the true posterior distribution 𝑃(𝑋|𝑁, 𝐵). A description of 1081 
the noise model and priors used are below. 1082 

 MCMC fitting procedure. Of course, in practice, we do not have computational resources 1083 
for an infinitely long chain, so it is necessary to ensure that the chain can replicate the posterior 1084 
distribution in a manageable amount of time. To accomplish this, we use a mixture of 1085 
Metropolis-Hastings (MH) and Hamiltonian Monte Carlo (HMC) steps. The HMC step uses 1086 
gradient information and tries to move the chain towards regions of higher likelihood. The other 1087 
MH steps are intended to help the chain get out of local optima by using information about the 1088 
structure of the model, so the Markov chain can better explore the full parameter space. 1089 
Specifically, one iteration of our fitting algorithm involves the following steps (here 𝒩 is once 1090 
again the normal distribution, and 𝒮 is drawn uniformly at random from the set [−1,1]), and 𝑖 is 1091 
the current iteration of the algorithm: 1092 

• MH proposal: ln(ℓ) → 𝒩:ln(ℓ) , 𝛿ℓ(𝑖)B 1093 

• MH proposal: ln(𝜎/0) → 𝒩 pln(𝜎/0) , 𝛿X-.(𝑖)q 1094 

• MH proposal: ln(𝜎*+,-.) → 𝒩 r	ln(𝜎*+,-.) ,
!
#
𝛿X/0123(𝑖)s 1095 

• HMC proposal on parameters 𝑐%) , 𝑐% , 𝑐&' , 𝑐(, 𝑏, 𝑛(0), ln(𝑠) with 𝜖 = 	𝛿YZ[(𝑖) 1096 
• MH proposal: 𝑐%) → 	𝒩(𝑐%)𝒮, 1) 1097 
• MH proposal (note that the instances of 𝒮 are drawn independently):  1098 

o 𝑐%) → 	𝒩(𝑐%)𝒮, 1) 1099 
o 𝑐% → 	𝒩(𝑐%𝒮, 1) 1100 
o 𝑏 → 𝒩(𝑏, 10V\)  1101 

After each iteration of the algorithm, the learning rate parameters 𝛿 are updated as 1102 
follows: If the respective proposal was accepted, its 𝛿 parameter is multiplied by 1.1; otherwise, 1103 
it is divided by 1.1. (They are all initialized to 1.) In this fashion, the learning rate will converge 1104 
to a value such that about half of the proposals will be accepted, resulting in a faster overall 1105 
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convergence of the MCMC chain. To construct the posterior samples used in our analysis, we 1106 
run this MCMC chain for 11,000 iterations, and discard the first 1,000 (including the 1107 
initialization point). The remaining 10,001 points in the posterior distribution are referred to as 1108 
particles. 1109 

MCMC chain initialization. Despite our efforts to use MH proposal steps to prevent the 1110 
MCMC procedure from falling into local optima, we found that the algorithm still occasionally 1111 
got stuck, preventing it from finding a good approximation to the true posterior. To remedy this, 1112 
we added a Likelihood Weighting initialization step consisting of sampling 100,000 points from 1113 
the prior distribution of model parameters and selecting the point with the highest likelihood 1114 
under our model, given the neural and behavioral data to be fit. This point is then used to 1115 
initialize the MCMC chain detailed above. Using Gen allowed us to combine Likelihood 1116 
Weighting with a custom set of MCMC kernels, described above. This can be viewed as a form 1117 
of resample-move SMC (Berzuini and Gilks, 2001). Gen also allowed us to automate validation 1118 
via simulation-based calibration (see next section). These capabilities are not provided by other 1119 
probabilistic programming languages such as Stan. 1120 

Simulation-based calibration 1121 

To ensure that our fitting process gave a calibrated description of the true model 1122 
posterior, we performed simulation-based calibration (Talts et al., 2020). In this procedure, we 1123 
generated 4,000 sample traces from the model distribution 𝑃(𝑋,𝑁	|𝐵) using the prior 1124 
distribution for 𝑋. 500 traces were generated using each of eight total values of 𝐵: two 800-time-1125 
point subsegments from each of four animals (two SWF415, and two SWF702 animals). We then 1126 
ran our MCMC inference procedure on each sample (three of the 4,000 traces timed out and 1127 
were discarded). After fitting, we then compared the sampled posterior distribution from our 1128 
inference algorithm to the ground-truth parameter values using a rank test with 128 bins. If our 1129 
inference process was giving unbiased estimates of the posterior distribution, then across all of 1130 
our traces, the distribution of these ranks should be the uniform distribution. 1131 

We used a 𝜒# test to differentiate the observed ranks from the uniform distribution, and 1132 
found that 9 of the 10 model parameters passed the test at p=0.05. The final parameter, the 1133 
EWMA decay constant 𝑠, seemed to have a minor bias towards larger values, meaning that our 1134 
fitting algorithm is prone to occasionally overestimate this parameter. However, we quantified an 1135 
upper bound on the degree of this overestimation by computing the maximum deviation of the 1136 
CDF of the observed rank distribution for 𝑠, compared with the predicted CDF from the uniform 1137 
distribution, and found a value of 3.5%. This means that the fits of at most 3.5% of encoding 1138 
neurons will be affected by this minor bias, which is less than an average of 4 per animal. Thus, 1139 
we do not believe this minor bias will substantially affect the results described in this paper. 1140 

CePNEM Noise Model 1141 

The CePNEM model uses a Gaussian process noise model adding together a white-noise 1142 
kernel and a squared exponential kernel. The white-noise kernel is intended to capture 1143 
measurement noise in our neural data, which is expected to be independent between time points, 1144 
while the squared exponential kernel is intended to capture variance in neural activity unrelated 1145 
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to behavior, which may have a slower timescale. The squared-exponential noise term is critically 1146 
important, as otherwise the model will be forced to try to explain all autocorrelation in neural 1147 
activity with behavioral information, resulting in severe overfitting. 1148 

 The white-noise kernel 𝐾12 has standard deviation 𝜎*+,-. and thus its covariance matrix 1149 
is 𝜎*+,-.# 𝐼. The squared-exponential kernel 𝐾/0 has standard deviation 𝜎/0 and length scale ℓ, 1150 

giving a covariance matrix defined by 𝑀,< = 𝜎/0# 𝑒
V(156)

(

(	ℓ( . The full noise model is then the 1151 
Gaussian process model with kernel 𝐾12 + 𝐾/0, which is then added to the timeseries of the rest 1152 
of the model fit to generate the likelihood of a given neural activity trace under CePNEM. 1153 

CePNEM Prior Distributions 1154 

𝑐%) , 𝑐% , 𝑐&' , 𝑐(, 𝑏, 𝑛(0)	~	𝒩(0,1) 1155 

ln(𝑠)	~	𝒩(ln(10) , 1)	 1156 

ln(ℓ) ~	𝒩(ln(20) , 1) 1157 

ln(𝜎/0) ~	𝒩(ln(0.5) , 1) 1158 

ln(𝜎*+,-.)~	𝒩(ln(0.125) , 0.5) 1159 

Here 𝒩(𝜇, 𝜎) is the normal distribution with mean 𝜇 and standard deviation 𝜎. Since the 1160 
neural traces being fit are all z-scored, the priors on the behavioral parameters are also 1161 
standardized. The prior on the moving average term 𝑠 was based on preliminary data from fitting 1162 
previous, conventional versions of our model. The priors on the noise terms were intended to be 1163 
wide enough to accommodate both neurons that are well-explained by behaviors (in which case, 1164 
the model would assign them a low noise value), and neurons that contain little to no information 1165 
about behaviors (in which case, the model would assign them a high noise value). 1166 

Statistical tests to determine encoding properties of neurons 1167 

Deconvolved activity matrix 1168 

 In order to be able to make statistical assertions about the neural encoding of behavior 1169 
based on the posterior distributions from CePNEM fits, we first needed to transform model 1170 
parameters into a more intuitive space. To accomplish this, for each neuron, we constructed a 1171 
10001 × 4 × 2 × 2 deconvolved activity matrix 𝑀 constructed as follows: 𝑀*,<] corresponds to 1172 
the modeled activity of the 𝑛th particle from that neuron’s CePNEM fit at velocity 𝑉[𝑖], head 1173 
curvature 𝜃𝐻[𝑗], and pumping rate 𝑃[𝑘]. Here, where 𝜃ℎ is the animal’s head curvature (dorsal 1174 
is positive) and 𝑝 is the animal’s pumping rate over the course of the recording, we have: 1175 

 1176 

𝑉 = ~med(rev	speed),
1
100med

(rev	speed),
1
100med

(fwd	speed),med(fwd	speed)� 1177 

𝜃𝐻 = [percentile(𝜃ℎ, 25), percentile(𝜃ℎ, 75)] 1178 
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𝑃 = [percentile(𝑝, 25), percentile(𝑝, 75)] 1179 

  1180 

 For this calculation, the EWMA and noise components are excluded from the modeled 1181 
activity; the idea is that this matrix contains information about the neuron’s activity at high and 1182 
low values of each behavior, so we can now run analyses on this matrix and not have to take into 1183 
account the actual behavior of the animal. In particular, many simple combinations of entries in 1184 
this matrix have intuitive meanings: 1185 

• The slope of the neuron’s tuning to velocity during forward locomotion is 1186 
𝑀*\<] −𝑀*5<] 1187 

• The slope of the neuron’s tuning to velocity during reverse locomotion is 1188 
𝑀*#<] −𝑀*!<] 1189 

• The neuron’s deconvolved forwardness (overall slope of the neuron’s tuning to 1190 
velocity) is 1191 

:𝑀*\<] −𝑀*5<]B + :𝑀*#<] −𝑀*!<]B 1192 
• The rectification of the neuron’s tuning to velocity (difference between forward 1193 

and reverse slopes) is 1194 
:𝑀*\<] −𝑀*5<]B − :𝑀*#<] −𝑀*!<]B 1195 

• The slope of the neuron’s tuning to head curvature during forward locomotion 1196 
(positive means dorsal during forward) is  1197 

𝑀*\#] −𝑀*\!] 1198 
• The slope of the neuron’s tuning to head curvature during reverse locomotion 1199 

(positive means dorsal during reverse) is  1200 
𝑀*!#] −𝑀*!!] 1201 

• The neuron’s deconvolved dorsalness (overall slope of the neuron’s tuning to 1202 
head curvature) is 1203 

(𝑀*\#] −𝑀*\!]) + (𝑀*!#] −𝑀*!!]) 1204 
• The rectification of the neuron’s tuning to head curvature with respect to 1205 

locomotion direction (positive means the neuron is more dorsal during forward; 1206 
negative means the neuron is more ventral during forward) is 1207 

(𝑀*\#] −𝑀*\!]) − (𝑀*!#] −𝑀*!!]) 1208 
• The neuron’s tuning to feeding follows the same pattern as its tuning to head 1209 

curvature. 1210 

Importantly, the linear structure of the multiplexing component of CePNEM implies that 1211 
the value of the unset parameters 𝑖, 𝑗, 𝑘 in the expressions above do not change the value of those 1212 
expressions. For head curvature, since worms can lay on either side, we manually checked the 1213 
location of the animal’s vulva from the NIR recordings of each animal and flipped dorsal/ventral 1214 
labels as appropriate. 1215 

Statistical encoding tests 1216 
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With the intuition derived from the deconvolved activity matrix, for each particle in the 1217 
posterior distribution of the neuron, we can ask whether that particle satisfies a certain property. 1218 
For example, to categorize a particle as representing forward locomotion, we would check 1219 
whether that particle had a sufficiently large deconvolved forwardness value. Specifically, we 1220 
would check whether its deconvolved forwardness value was at least max	(𝜉!, 𝜉#), where 𝜉! =1221 

	 >.!#6
KJ_BLS

	 (here signal = KMP(=)
DFLB(=)

 and 𝐹 is the un-normalized ratiometric fluorescence of the neuron 1222 

in question), and 𝜉# = 0.25 X:
X;
	 (here 𝜎` is the standard deviation of the model fit corresponding 1223 

to that particle with 𝑠 = 0 and 𝜎Z is the standard deviation of the model fit corresponding to that 1224 
particle). The number 0.125 was selected based on its ability to filter out the small amount of 1225 
motion artifacts observed in our three GFP control datasets (see Methods section on that control 1226 
below). Specifically, we chose a value that filtered out almost all of the motion artifacts (leaving 1227 
only 2.1% of GFP neurons showing false behavioral encoding), while removing as few true 1228 
encodings from our GCaMP data as possible. Similarly, the number 0.25 was selected based on 1229 
its ability to filter out extremely weak correlations between neural activity and behavior, which 1230 
was measured by our controls attempting to fit neurons with behaviors from different animals 1231 
(after the correction, only 2.7% of such neurons showed behavioral encoding). The X:

X;
 term is a 1232 

correction for the fact that neurons with large 𝑠 values will have higher values in 𝑀. If the 1233 
particle’s deconvolved forwardness value was at least max	(𝜉!, 𝜉#), it would be classified as 1234 
representing forward locomotion. 1235 

By the same token, we would classify a particle as representing reverse locomotion if its 1236 
deconvolved reverseness (negative forwardness) value was at least max	(𝜉!, 𝜉#), we would 1237 
classify a particle as representing more dorsal information during forward locomotion if its 1238 
rectification to head curvature with respect to locomotion direction was at least max	(𝜉!, 𝜉#), and 1239 
so on.  1240 

Now that we can classify particles, we can create empirical 𝑝-values for neurons based on 1241 
the fraction of their particles that share a category. For example, if 98% of particles for a neuron 1242 
are classified as representing forward locomotion, then that neuron’s 𝑝-value for forward 1243 
locomotion would be 0.02. We can then construct a list of such 𝑝 values computed for each 1244 
neuron in an animal that was fit with CePNEM and use Benjamini-Hochberg correction with 1245 
FDR=0.05 to get a list of forward-encoding neurons in that animal. We can similarly get a list of 1246 
reversal neurons, dorsally-rectified head curvature neurons, neurons activated by feeding during 1247 
forward locomotion (i.e. have a positive slope to feeding during forward locomotion), and so on. 1248 

To construct larger categories, such as neurons with any behavioral encoding, or neurons 1249 
with head curvature encoding, another multiple hypothesis correction step is necessary. For this 1250 
step, we first use Bonferroni correction on opposing categories where it is impossible for a 1251 
neuron to have both categories (for instance, dorsal and ventral tuning), followed by a 1252 
Benjamini-Hochberg correction step on the Bonferroni-corrected 𝑝-values. We then proceed 1253 
with the inter-neuron Benjamini-Hochberg correction, as before. 1254 
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A neuron is categorized as encoding head curvature if it expresses statistically significant 1255 
information about any of the four head curvature categories outlined above, in either direction; 1256 
feeding encoding is computed similarly. A neuron is categorized as encoding velocity if it either 1257 
expresses statistically significant information about any of the four velocity categories, or if it 1258 
expresses statistically significant information about any of the rectified categories, since 1259 
rectification of head curvature or feeding based on forward/reverse locomotion state is a form of 1260 
velocity information. A neuron is categorized as encoding if it has statistically significant 1261 
information in any of the tests. Note that for datasets without any feeding information (defined as 1262 
the 25th and 75th percentile of feeding in that dataset being the same, causing 𝑃[1] = 𝑃[2]), 1263 
neurons cannot encode feeding information, so feeding is not included in the multiple-hypothesis 1264 
correction to check whether a neuron encoded any behavior. 1265 

Forwardness, Dorsalness, and Feedingness 1266 

The forwardness metric for a neuron is computed as the median of p𝐹 ⋅ X;
X:
⋅ signalq  1267 

over all particles for that neuron, where 𝐹  is the deconvolved forwardness of that particle, and 1268 
𝜎Z, 𝜎`, and signal are as before. Dorsalness and feedingness are computed in a similar fashion. 1269 

Time ranges 1270 

One final note is that all neurons are fit twice – once over the first half of the data, and 1271 
once over the second half. This is done because a large number of our SWF415 datasets have a 1272 
gap in the middle, and due to the EWMA term in our model, it would be difficult to fit a model 1273 
in a time range that included a gap. Thus, for consistency between all our datasets, we fit all of 1274 
our SWF415 and NeuroPAL datasets in this manner.  1275 

For Figure 2A, the encoding statistics are computed on a per-neuron basis, with an 1276 
additional Benjamini-Hochberg correction step to account for the fact that each neuron got two 1277 
chances to qualify as encoding. Time ranges with insufficient feeding variance (this time, 1278 
defined as the difference between the 25th and 75th percentile of feeding being at most 0.5) are 1279 
excluded from feeding analysis. To avoid different behaviors having different amounts of 1280 
available data, animals that never had sufficient feeding variance are excluded from Figure 2A 1281 
entirely. For Figure 2B, the same analysis is used, and there is an additional multiple-hypothesis 1282 
step across the three behaviors. For Figures 2C and S2G, all time ranges are used. Fits on 1283 
different time ranges from the same animal are added to the CDF independently of each other, 1284 
but only encoding neurons are included. For example, a neuron that encoded behavior in both 1285 
time ranges would have its EWMA timescale from both fits added to the CDF, while a neuron 1286 
that only encoded behavior once would have that EWMA timescale added. In Figure S2G, only 1287 
neurons that statistically significantly encoded forward or reverse locomotion are included. 1288 

Neuron Subcategorization 1289 

We next sought to combine various pieces of information from our encoding analysis 1290 
together to generate a holistic view of how a given neuron is tuned to a given behavioral 1291 
parameter. To accomplish this, we sorted neurons as follows (this analysis is done independently 1292 
on each time range): 1293 
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• If the neuron had a different sign to its tuning to behavior during forward and reverse 1294 
(eg: a slow neuron that has a positive slope in its tuning to velocity during reversal, 1295 
but a negative slope during forward locomotion), then the neuron was categorized as 1296 
such. In Figures 2G-2I, these neurons would appear in the bins (+,-) and (-,+); for 1297 
head curvature, they would be (D,V) or (V,D). 1298 

• Otherwise, if the neuron has rectified tuning to the behavior (depending on the 1299 
behavior, one of the following categories: forward slope > reverse slope, reverse 1300 
slope < forward slope, more dorsal during forward, more ventral during more 1301 
activated during forward, more activated during forward, or more inhibited during 1302 
forward), it will be placed in one of the four rectified bins (+,0), (-,0), (0,-), or (0,+), 1303 
depending on the sign of the rectification and sign of the slopes of the neural tuning to 1304 
behavior. 1305 

• Otherwise, if the neuron had the same slope during both forward and reverse 1306 
movement, it will be classified in one of the two analog bins (+,+) or (-,-) depending 1307 
on the sign of that slope. Notably, it would be placed in a rectified bin (and not an 1308 
analog bin) if it had rectified information, even if it had the same slope during both 1309 
forward and reverse locomotion. 1310 

• If none of the above were true, the neuron lacked statistical significance in at least 1311 
two of the three parameters (forward slope, reversal slope, rectification) with respect 1312 
to the behavior in question, and it will be excluded from Figures 2E-2G. 1313 

In Figures 2H and 2I, the neurons had the same tuning in both time ranges, and the 1314 
EWMA values reported incorporate fits from both time ranges. 1315 

Median model fits 1316 

 For display purposes, or analyses where it was necessary to represent a neuron with a 1317 
single model, we computed the median model by computing 𝑛,[𝑡] for each set of parameters 𝑖	in 1318 
the neuron’s posterior distribution, and then defining 𝑛a.8[𝑡] = median,(𝑛,[𝑡]). This is what is 1319 
meant by “median CePNEM fit” unless otherwise noted. 1320 

Encoding strength 1321 

Encoding strength is a metric designed to approximate the information content a neuron 1322 
contains about each behavior, given its CePNEM model fits. It is computed by generating three 1323 
model traces 𝑛%, 𝑛&', and 𝑛b, each of which is identical to the full model 𝑛[𝑡] except that the 1324 
behavior 𝑖 is set to 0 for model 𝑛,. Thus, the MSE between 𝑛 and 𝑛, provides a metric of how 1325 
important behavior 𝑖 was for the neuron. We compute the encoding strength of a neuron to 1326 

behavior 𝑖 as the ratio Z/0(*,*1)
∑ Z/0d*,*6e6

. 1327 

GFP Control 1328 

We wanted to ensure that we would not spuriously detect motion artifacts as encodings of 1329 
behavior. To do this, we used our pan-neuronal GFP control line SWF467, which by definition 1330 
should not have any neurons detect as encoding behavior. We fit our GFP datasets with 1331 
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CePNEM and applied the same encoding analysis to this strain and found that only 2.1% of 1332 
neurons showed behavioral encoding, compared with 58.6% in the SWF415 strain, suggesting 1333 
that the vast majority (>95%) of our detected encodings are not due to motion artifacts. 1334 

Scrambled Control 1335 

 We furthermore wanted to ensure that the model would not overfit to spurious 1336 
correlations between neural activity and behavior. To accomplish this, we fit 11 SWF415 1337 
animals with CePNEM, but replaced the behaviors 𝑣, 𝜃ℎ, and 𝑝 with spurious behaviors from 1338 
other recorded animals, which should result in few neurons showing behavioral encoding. The 1339 
spurious behaviors were generated as follows: we first assign pairs of datasets to minimize the 1340 
behavioral correlation across the datasets within a given pair. To do this, we compute correlation 1341 
across all possible behavior and dataset combinations. After that, we determine the pairing such 1342 
that it minimizes the maximum absolute cross-correlation value across all pairings. To penalize 1343 
high correlation values, we raised the correlations to the power of 4.  1344 

When we analyzed the CePNEM model results, we found that only 2.7% of neurons 1345 
detected as having behavioral encoding, suggesting that the vast majority (>95%) of our detected 1346 
encodings are not due to overfitting. 1347 

Constructing low-dimensional embeddings of neurons via UMAP 1348 

 We wanted to use CePNEM to construct a low-dimensional UMAP space where any 1349 
neuron from any animal could be embedded. To accomplish this, we took the three modeled 1350 
behaviors from 12 SWF415 animals and appended them, so as to have a wide range of possible 1351 
behavioral dynamics. Then, we took 4,004 median CePNEM fits (sampled from 14 SWF415 1352 
animals) and extrapolated them over the appended behavioral data, to estimate what the neuron 1353 
would have done under our model over a wide range of behaviors. We then ran UMAP on the 1354 
resulting 4004 × 19200 matrix to define a two-dimensional embedding space. Finally, we 1355 
projected all posterior CePNEM fits from each neuron into this UMAP space to create the point 1356 
cloud shown in Figure 3A. We also projected subsets of neurons based on encoding type 1357 
(Figures 3B-3F), identity (Figure 5E), and dataset (Figure S3); to do this, we simply run the same 1358 
projection procedure on all posterior CePNEM fits from each neuron in the subset in question 1359 
(i.e. the UMAP space was the same for all embeddings shown in the paper). 1360 

 1361 

Neural trace reconstruction using principal component analysis 1362 

To determine the number of principal components needed to reconstruct each neuron, 1363 
PCA was performed first on all neurons in each dataset. Neurons without high enough SNR were 1364 
excluded from the analysis. We determined the SNR cutoff based on our GFP datasets. 1365 

Specifically, a given neuron needed to have signal standard deviation higher than !
!V(

σ1=b, 1366 

where σ1=b is the GFP signal standard deviation and 𝑝 is the required fraction of variance 1367 
explained. To reconstruct the neurons, each neuron’s loadings were sorted by absolute value. 1368 
Then we increase the number of principal components used to reconstruct until the required 1369 
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variance explained is met. In each dataset, this process is repeated for all neurons with high 1370 
enough SNR. 1371 

 1372 

Neural trace clustering analysis 1373 

To estimate the optimal number of clusters in the neural traces (Fig. S4A), we first mean center 1374 
neuron. Then k-means clustering is performed on each dataset with varying number of clusters, 1375 
k, ranging from 2 to 10. For each k, we compute the Calinski-Harabasz index. We repeat this on 1376 
all SWF415 datasets. 1377 

 1378 

MSE model fits 1379 

 For some analyses, we found it useful to fit our model in a more conventional manner, 1380 
simply trying to minimize the mean-squared error (MSE) between the model fit and neural 1381 
activity rather than using Gen to compute the posterior. For these fits, we deleted the noise 1382 
component of our model and instead simply fit 𝑛[𝑡] by trying to minimize the MSE between it 1383 
and the observed neural activity, set 𝑛(0) = 0, and ignored the first 50 time points after each 1384 
recording began for the MSE calculation (so for datasets with a gap in the middle, we would 1385 
ignore the first 50 time points, as well as time points 801:850). We used L-BFGS for local 1386 
optimization and MLSL-LDS for global optimization, and performed these fits using the NLopt 1387 
Julia package (Johnson, 2022). 1388 

 1389 

Model degradation analysis 1390 

 We tested how each component in the model affects the performance by quantifying the 1391 
increase in error, compared to the full model, when removing the following component 1392 
individually: each predictor (velocity, head curvature, feeding), the velocity non-linearity, 1393 
removing the EWMA, and all non-linear features (resulting in a fully linear model). The models 1394 
were fitted using our MSE fitting technique with L2 regularization. Out of the 14 pan-neuronal 1395 
GCaMP baseline datasets, 5 were excluded from this analysis due to low variance in the 1396 
pumping rate. 3 datasets were used to optimize the regularization parameter, and the remaining 6 1397 
datasets were used to compute the increase in error. Models were fit with 5-fold cross-validation 1398 
set, splitting each dataset into 5 equal length time segments. The error was computed as the mean 1399 
test time error of the cross-validation splits. For each degraded model type, neurons encoding the 1400 
removed feature were selected for analysis. For example, degraded model without velocity was 1401 
tested on the neurons with velocity encoding. The increase in error was computed by comparing 1402 
the error in degraded model to the error of the full model. Finally, we used the Wilcoxon signed 1403 
rank test for statistical significance. 1404 

 1405 

Statistical tests to examine dynamic changes in neural encoding. 1406 
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 To determine whether a given neuron in a recording changed how it encoded behavior, 1407 
we used the following procedure. First, we fit two CePNEM models to compare against each 1408 
other. For baseline datasets without any stimulation (both SWF415 and NeuroPAL), we split the 1409 
dataset in half and used fits from each half – the same fits used in the encoding analysis. For the 1410 
heat-stimulation datasets, we took one fit from the timepoints up until just before the stimulation, 1411 
and another fit from the 400 timepoint block (stim+10) to (stim+409) for heat-stimulation 1412 
datasets without a gap in the middle, or alternatively (stim+10) to 800 for datasets with such a 1413 
gap. 1414 

 Next, we computed deconvolved activity matrices as defined above on each of the 1415 
CePNEM fit posteriors. We ran the same procedure used to detect encoding, but this time instead 1416 
of computing metrics on individual particles, we computed those metrics on differences between 1417 
the deconvolved activity matrices for all possible pairs of particles from each of the two model 1418 
fits, which was a total of slightly more than 108 such differences per neuron. We used our noise 1419 
threshold 𝜉! as before, but 𝜉# is set to 0 for this test because it is not well-defined when 1420 
considering multiple model fits. Neurons that passed our encoding test at 𝑝 = 0.05 using the 1421 
differences between the deconvolved activity matrices for behaviors other than feeding (there 1422 
were too few datasets with enough feeding variance in both time ranges to make a meaningful 1423 
statistical comparison), and encoded behavior (using our standard behavior encoding test) in at 1424 
least one time range were added to the list of encoding changing neuron candidates. 1425 
Additionally, we checked whether the EWMA parameter 𝑠 changed by computing differences 1426 
between all possible values of 𝑠 in the two model fits, and asking whether that was greater than 1427 
0. This comparison was Benjamini-Hochberg corrected over all neurons, and neurons that passed 1428 
the test at 𝑝 = 0.05 and also encoded behavior (using our standard behavior encoding test) in 1429 
both time ranges were added to the list of encoding changing neuron candidates. 1430 

 To additionally ensure that encoding changes are due to legitimate changes in neural 1431 
relationship to behavior, and not due to model overfitting, we fit a MSE model across all 1432 
timepoints and asked whether its performance was significantly worse than the performance to 1433 
the two models with the hypothesized encoding difference, when evaluated over their respective 1434 
time ranges. In other words, we attempted identify a model fit trained on the maximal amount of 1435 
data available that explains the data as well as the two different models that we hypothesized 1436 
were different. We only did this analysis for neurons in our list of encoding changing neuron 1437 
candidates. The purpose of these fits was to compute the best possible explanation under the 1438 
model of explaining neural activity without any assumptions about noise, so these MSE fits were 1439 
not regularized at all. We then asked whether these non-regularized MSE fits could match the 1440 
performance of CePNEM on both time ranges. If they could, then there exists a set of parameters 1441 
that can explain neural activity in both time ranges, and so we would want to exclude the neuron 1442 
in question from our encoding change analysis. 1443 

To accomplish this, for each particle in the CePNEM posterior, we extrapolated that 1444 
particle into a model fit on the time range that model was trained on (excluding the first 50 time 1445 
points after a recording began), and computed that particle’s MSE. Using these MSE values, we 1446 
computed the probability that the CePNEM model fit’s MSE was higher than that of the 1447 
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conventional model evaluated over that same time range. We used Bonferroni correction on the 1448 
two 𝑝-values thus computed in each of the two time ranges, and then used Benjamini-Hochberg 1449 
correction across all neurons in the encoding changing neuron candidates list. The neurons that 1450 
passed this test were then classified as having an encoding change. 1451 

Encoding change strength 1452 

 For neurons that had an encoding change according to our statistical framework above, it 1453 
is desirable to estimate how much the neural tuning to behavior changed. To do this, we compute 1454 
model fits 𝑛![𝑡] and 𝑛#[𝑡] for each of the two time ranges in question from the median of the 1455 
CePNEM posterior parameters for those time ranges. Because feeding is excluded from encoding 1456 
change analysis, the feeding behavior is excluded (set to 0) for these fits. We then define 1457 

encoding change strength as Z/0(*'[;],*([;])
DLh	(iLG(*'[;]),iLG(*([;]))

, a metric of how much the neural fit changed 1458 

relative to its variance. Average encoding change strength of a neuron is then the mean of its 1459 
encoding change strength across each dataset where it had an encoding change. 1460 

Behavioral analyses during cellular perturbations 1461 

 For behavioral analysis in AIM- and RIC-inactivated animals, we (i) recorded animal 1462 
speed on multi-worm trackers, as previously described (Rhoades et al., 2019), (ii) recorded head 1463 
curvature behaviors on high-resolution single worm trackers, as previously described (Cermak et 1464 
al., 2020), and (iii) quantified pharyngeal pumping manually.  1465 

 1466 
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Figure 1. The C. elegans Probabilistic Neural Encoding Model (CePNEM) can reveal how 
neurons across the C. elegans brain represent behavior 

(A) Light path of the microscopy setup. On the upper light path (“NIR imaging and tracking 
system”), the 850-nm (NIR) LED is collimated and filtered (850-nm bandpass). The illumination 
light is reflected downward by the half mirror into the 10x objective, illuminating the sample. 
The reflected light is collected by the same objective and passed through the half mirror. The 
image is filtered (850-nm bandpass) and captured by the camera. The captured image (panel B) 
is processed by the online tracking system, which sends out commands to the stage to cancel out 
the motion. On the bottom light path, the spinning disc confocal setup illuminates and collects 
the fluorescence signal from the sample. The collected signal is split by a dichromatic mirror and 
captured by two cameras.  

(B) Example image of a worm collected through the NIR brightfield light path. 

(C) Example image of a confocal volume (maximum intensity projection) captured at the same 
time as in (B). 

(D) Automatic Neuron Tracking System for Unconstrained Nematodes (ANTSUN) software 
pipeline to process and extract GCaMP signals from the confocal volumes over time. Detailed 
descriptions of each of the steps depicted in this cartoon are provided in Methods. 

(E) F/F20 (F20 is the 20th percentile of F across the time series for the neuron) heatmap of neural 
traces collected from a pan-neuronal GFP control animal. Data are shown using same color scale 
as GCaMP data in (G). 

(F) Comparison of variation in F/F20 from the extracted traces in all neurons in 3 GFP control 
animals (σ = 0.074) and 14 GCaMP animals (σ=0.392). 

(G) A full example dataset, showing a F/F20 (F20 is the 20th percentile of F across the time series 
for the neuron) heatmap of neural traces together with the animal’s velocity, head curvature, 
feeding behavior, angular velocity (change in animal’s heading over time), and body angles (a 
vector of angles from head to tail that define the shape of the animal). For head curvature, an 
inset (green) shows a zoomed in region of the behavioral trace to illustrate fast head oscillations. 

(H) Three example neurons from one animal that encode velocity over different timescales. Each 
neuron (blue) is correlated with an exponentially-weighted moving average (red) of that animal’s 
recent velocity, but over different timescales (gray traces). Note that the three gray traces show 
velocity from the same animal over the same time segment, but convolved with exponential 
decay kernels that have different half-decay times, as is illustrated by the red kernels overlaying 
the instantaneously velocity trace from that animal (top). The different example neurons’ 
correlation coefficients 𝜌 to these filtered velocity data are displayed as insets; we also display 
the exact half-decay times of the exponential filters used. 

(I) Example tuning (velocity vs neural activity) scatterplots for three example neurons (different 
from those in H) showing how their activity relates to velocity (see Methods). The dots are 
individual timepoints (each with a neural activity and corresponding behavioral measurement) 
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for these three example neurons. Altogether, the full set of dots reveal how each neuron’s 
activity changed as a function of velocity. Separate trendlines were fit to all datapoints for 
reverse and forward velocity. 

(J) Example tuning scatterplots for three example neurons displaying how neurons’ activities can 
combine information about the animal’s head curvature (color) and velocity (x axis). The dots 
are individual timepoints (each with a neural activity and corresponding behavioral 
measurement) for these three example neurons. Head curvature at each timepoint is indicated by 
the color of the dot. Altogether, the full set of dots reveal how each neuron’s activity changed as 
a function of velocity and head curvature. Note that for each neuron the red and green dots 
separate from one another only for negative or positive velocity values (corresponding to reverse 
or forward movement, respectively). This indicates that the neurons vary their activity based on 
head curvature only during forward (neurons on left and right) or reverse (neuron in middle) 
movement. 

(K) Simplified expression of the deterministic component of CePNEM. This model is applied to 
each neuron in the brain-wide recordings. Each neuron is modeled as the recent weighted 
average of multiple behavioral predictor terms. Note that in this simplified depiction of the 
model Equation 1 in the text. We represent the effect of timescale via an integral with parameter 
𝜆, whereas Equation 1 represents timescale via recursion with parameter 𝑠, which we then 
transform into and report as a half-decay time 𝜏!/#. 

(L) Left and Middle: Schematic demonstrating how the MCMC fitting process is initialized and 
fit. Likelihood weighting selects a particle with the best fit to the neural and behavioral data. An 
MCMC process is then used to determine the posterior distribution. Gray shading here indicates 
model likelihood given the parameters in that region of parameter space. Right: an example 
posterior distribution that results from the fitting process being run on a neural trace. This is 
shown for just two of the model’s parameters (x- and y-axes here) for this illustrative purpose. 

(M) An example neuron trace (blue) that was fit with CePNEM. This fit resulted in a posterior 
distribution of model parameters. A model trace 𝑛[𝑡] was generated from each set of parameters 
drawn from the posterior, and a heatmap of all such models is plotted in orange. 

(N) Example neural traces overlaid with the median of all posterior CePNEM fits for that neuron 
(referred to henceforth as median CePNEM fits). 
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Figure 2. Rich and varied representations of behavior across the C. elegans brain, spanning 
multiple timescales 

(A) Mean fraction of all detected neurons in the brain that encode velocity, head curvature, and 
feeding in 10 animals (datasets with insufficient variance in pumping behavior are excluded from 
this particular analysis - see Methods). Error bars are the standard deviation between animals. 

(B) Mean fraction of all detected neurons in the brain that encode 0, 1, 2, or 3 of the behaviors in 
the model (velocity, head curvature, or feeding) in the same 10 animals as in (A). Error bars are 
the standard deviation between animals. 

(C) Mean ECDF of the median model half-decay time of all neurons demonstrated to encode at 
least one behavior in 14 animals. The shaded region represents the standard deviation between 
animals. 

(D) Performance of linear decoders trained to predict velocity at times in the past (x-axis) from 
current neural activity (red). Performance was defined as the difference in error (computed as the 
standard deviation of the difference between actual velocity and predicted velocity, in mm/sec) 
between the actual decoders and control decoders that used time-shifted values of the predictive 
variables (see Methods for more details). The velocity values to be predicted were each averaged 
over a 10 second sliding window centered Δ𝑡 seconds into the past. All neurons with significant 
encoding of velocity were used as predictor terms. For comparison, a decoder was also trained to 
make this prediction based on current velocity (black), so that we could estimate the degree to 
which current velocity predicts past velocity via autocorrelation. Another “best possible” decoder 
was also trained to make this prediction based on current and past velocity (gray), which should 
be able to perform nearly-perfectly (since it is given the information it is trying to predict) and 
thus estimate the best possible performance of such a decoder. Note that the use of the 10-second 
sliding window causes the current velocity decoder to underperform the best possible decoder 
even at Δ𝑡 = 0. The observation that neurons predict velocity better in the past (Δ𝑡 ≈ 5) than 
present likely relates to the fact most velocity-encoding neurons in the head represent recent, 
rather than instantaneous, velocity. Error shading indicates standard deviation across animals. 

(E) A categorization of how the full set of velocity-encoding neurons represent velocity. Based 
on each neuron’s tuning to velocity during forward and reverse movement (i.e. the slope of its 
tuning curve for velocities >0 and <0, respectively), it could potentially be categorized into one 
of eight groups. All velocity encoding neurons were sorted into these categories based on a 
statistical analysis of their CePNEM fits. The overlaying gray traces indicate the prototypical 
tuning curve for each category (inset in the upper right illustrates how to interpret the gray tuning 
curves, using an example). See Methods for more details. Color reflects “tuning abundance,” 
which is the number of detected neurons in each bin, scaled by their velocity encoding strength. 

(F) Same as (E), but for head curvature encoding neurons. 

(G) Same as (E), but for feeding encoding neurons. 

(H) Five example neurons from the same animal that all encode forward locomotion, together 
with CePNEM-derived tuning curve diagrams for each neuron, and the mean and standard 
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deviation each neuron’s half-decay time 𝜏!/#. Note that although all five neurons encode 
forwards velocity, their neural activity traces have notable differences in dynamics. Importantly, 
the model (orange) captures these differences. The third neuron lacked statistical significance on 
the velocity slope variable during forward locomotion, so the tuning curve is in a lighter shade to 
reflect this uncertainty. 

(I) Three example neurons from the same animal that all encode head curvature in conjunction 
with movement direction, together with CePNEM-derived tuning parameters for each neuron 
(shown above each neural trace). Neural traces are shown in blue and median model fits are 
shown in orange. Head curvature of the animal is shown below. 

(J) Three example neurons from the same animal that all encode feeding information. All three 
neurons have the “Analog Act” tuning. Neural traces are shown in blue and median model fits 
are shown in orange. Feeding rate of the animal is shown below. 
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Figure 3. Global analysis of the encoding properties of neurons across the C. elegans 
nervous system 

(A) Low-dimensional UMAP embedding space for neurons. Neurons were embedded in this 
space using a similarity metric that computes how similarly the neurons encode behavior; thus, 
proximity indicates encoding similarity (see Methods for details). In this plot, we projected all 
points from all CePNEM posteriors in 14 animals into this defined UMAP space to create the 
point cloud here, which is shown using a log scale for brightness. Fig. S3D shows just the 
median fits from the posteriors (i.e. one dot per neuron) projected into this space, which yields 
the same tiling and shape. See Methods for more details. 

(B-E) UMAP space where neurons are color coded by their behavioral encodings: feeding 
activated vs inhibited (B), long (>20 sec) vs short (<20 sec) half-decay times (C), dorsal vs 
ventral (D), and forward vs reverse (E). 

(F) Enlarged view of the portion of the UMAP space containing forward neurons, where the 
neurons are color-coded by the type of forward velocity tuning they have (tunings are depicted 
next to neuron groups in corresponding colors). 

(G) Neurons from an example animal, together with their tuning to velocity, head curvature, and 
feeding, and loadings onto the top five principal components in an example animal. The neurons 
are hierarchically clustered by their loadings onto the PCs, which causes neurons with similar 
tunings to behavior to end up clustered together due to behavioral information present in the PCs. 
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Note also that each neuron has strong factor loadings from multiple PCs (only five of which are 
shown here). 

(H) Number of principal components needed to explain 75% of the variance in a given neuron, 
averaged across neurons in 14 animals. Only neurons with sufficiently high signal (see Methods) 
are shown, to prevent this curve from being right-shifted due to explaining measurement noise. 
Half of the neurons require >8 principal components to explain 75% of their variance. Data are 
shown as means and standard deviation across animals. 
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Figure 4 
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Figure 4. An atlas of how the different C. elegans neuron classes encode behavior 

(A) An atlas of how the indicated neuron classes encode features of the animal’s behavior, 
derived from analysis of fit CePNEM models. All neuron classes that were recorded, identified, 
and mapped back to GCaMP traces are shown. Columns indicate the encoding features of the 
neurons, as follows (see Methods for additional details): 

• Encoding strength for each of the three behaviors indicates an approximation of the 
relative variance in neural activity explained by each behavioral variable.  

• Forwardness and Dorsalness capture the steepness of the tuning to velocity and head 
curvature, respectively.  

• Encoding timescale is the median exponentially weighted moving average (EWMA) 
half-decay time from the CePNEM model, which indicates how the neuron’s activity 
weighs past versus present behavior for the parameter(s) that it encodes. 

All other columns show the fraction of recorded neurons that significantly encoded behavior 
defined by each column description (see Methods for more details, and see Figure S5B for a 
legend that explains how these encodings relate to the neural tunings from Figure 2): 

• Fwd, Rev, Dorsal, Ventral, Activated, and Inhibited represent neurons with that 
overall tuning to the behavior (velocity, head curvature, or feeding). 

• Fwd slope -, Fwd slope +, Rev slope -, and Rev slope + represent neurons with that 
slope in their tuning curves to velocity during the specified movement direction. For 
example, a neuron with both Fwd slope - and Rev slope + would have a tuning curve to 
velocity that looks like /\, ie encoding slow locomotion.  

• F slope > R slope and F slope < R slope represent neurons displaying rectification in 
their velocity tuning curves, with the slope of the tuning curve during forward movement 
being either larger or smaller than during reverse movement, respectively. 

• Dorsal during F, Ventral during F, Dorsal during R, Ventral during R, Act during 
F, Inh during F, Act during R, and Inh during R represent neurons with the specified 
tuning to the behavior (head curvature or feeding) during the specified movement 
direction (Forward or Reverse). 

• More D during F, More V during F, More A during F, and More I during F represent 
neurons with different tunings to the behavior (head curvature or feeding) during forward 
versus reverse locomotion. For instance, a More D(orsal) during F(orward) neuron 
would indicate a neuron with stronger dorsal-tuning during forward movement compared 
to reverse; the other categories behave similarly. 

Black pixels mean that the neuron was never found to significantly encode the behavioral 
parameter. Numbers in parenthesis on the right indicate the number of CePNEM fits for that 
neuron class (left/right neurons are counted separately; first and second halves of videos, which 
have different model fits, are also counted separately). 

(B-C) Circuit diagram of the neuron classes that innervate the dorsal and ventral head muscles, 
with colors (tuning of neuron to dorsal versus ventral head curvature) and circle sizes (overall 
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activity level during forward or reverse) indicating how each neuron is tuned to behavior during 
forward (B) and reverse (C) movement. Grey connections are from the C. elegans wiring 
diagram. Note the large degree of symmetry in neural encoding and the shift in tuning/activity 
based on forward (B) versus reverse (C) movement. 

(D) Circuit diagram of several sub-circuits including locomotion (forward/reverse) and 
pharyngeal circuit, connected to the head curvature circuit in (C). The color of each node 
indicates the median half-decay time of the neuron class. The color in the pharyngeal circuit 
indicates the feedingness (steepness of neuron’s tuning curve to feeding). The middle group 
(AIN, RIH, RIS, URY, IL1, OLQ) are richly connected to locomotion, head curvature, and 
feeding (via the RIP neuron that links to the pharyngeal circuit).  
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Figure 5 
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Figure 5. Neural representations of behavior dynamically change over time at stereotyped 
sites in the C. elegans connectome 

(A) Data from an example animal showing a sharp change in relative model performance in 
flexible encoding neurons. The relative model performance (y-axis) was calculated as follows. 
We fit two CePNEM models (M1 and M2) to the first and second halves of the 16min recording, 
respectively. We then computed the difference between the errors of the two median model fits 
(computed as the MSE to the observed neural trace) at every time point, and took a moving 
average over 200 time points. This was then averaged across neurons. As is indicated, values >0 
indicate that M2 model fits better, whereas values <0 indicate that M1 model fits better. A 
sudden change in this metric (dashed yellow line) indicates a sudden shift in which model fits the 
neural data, indicative of an encoding change.  

(B) Two example neurons from the animal in (A) with CePNEM fits, showing a change in neural 
encoding of behavior at the moment of the hypothesized state change. The models were fit on the 
parts of the data where the model fit is colored in orange and used to predict activity over the full 
time series. 

(C) Data from an example NeuroPAL animal that also shows a sharp change in relative model 
performance, displayed as in (A). 

(D) Example neurons OLQDL and AVEL with median CePNEM fits from the animal in (C). 

(E) UMAP plots to show the degree to which neurons change encoding. Each plot shows the 
projections of all CePNEM fit posteriors across all recordings for OLQD (top) and AVE 
(bottom) into the UMAP space, in green. The background UMAP space of all neurons is shown 
in grey. White arrows are drawn between the median model fits between two time ranges from 
individual recordings if the neuron had an encoding change between those time ranges. Average 
encoding change strength (indicated) was computed as the variance of the difference between the 
two time-range specific median CePNEM fits extrapolated over the full time range, divided by 
the maximum of the variances of those two extrapolated fits, averaged over all animals where the 
neuron in question had an encoding change. See Methods for more details.  

(F) A categorization of how the encoding properties of neurons can change across all recorded 
SWF415 animals. More detailed explanations of each category, which were computed based on 
comparing which behaviors the neuron encoded before and after the encoding change: “lose all” 
(the neuron lost all of its tuning to behavior), “lose some” (the neuron lost tuning to at least one 
behavior, and didn’t gain tuning to any behavior), “gain all” (the neuron did not encode any 
behavior before the encoding change, but did afterwards), “gain some” (the neuron gained tuning 
to at least one behavior, and didn’t lose tuning to any behavior), “swap” (the neuron both gained 
and lost tuning to behaviors, effectively switching which behavior it encoded), and “modify” (the 
neuron encoded the same set of behaviors, but in a different way). 

(G) A diagram of all neurons detected in our NeuroPAL recordings, sorted by neuron type and 
encoding change abundance. Encoding change abundance was computed as the average 
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encoding change strength as computed in (E) over all datasets where that neuron was detected. 
Interneurons are vertically sorted by the fraction of their inputs that come from sensory neurons. 
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Figure 6. Behavioral state changes cause a widespread remapping of how neurons encode 
behavior 

(A) A 1436nm IR laser transiently increases the temperature around the animal’s head during a 
whole-brain imaging session. The stimulus increased the temperature by 10°C for 1 sec and 
decayed back to baseline within 3 sec. This is just an illustrative cartoon. 

(B) Event-triggered averages of behavioral properties of 32 animals in response to the heat 
stimulus, demonstrating an increased reversal rate and decreased feeding rate that persist for 
several minutes after stimulation. **p<0.05, Wilcoxon signed rank test, comparing baseline pre-
stimulus behavior to post-heat-stimulus behavior. 

(C) Experiments to examine the impact of the heat stimulation on the behavior and health of the 
animals. Animals subjected to the heat stimulation did not display a significant difference ( =
0.62  in a Mann-Whitney U-Test computed over 10 animals) in their exploratory behavior 
(computed as counting the number of squares each animal entered on an assay plate) relative to 
mock-stimulated animals (animals that were mounted on imaging slides, but not given the 
thermal stimulus). 
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(D) The heat stimulation did not kill any animals (all animals were alive 2 days after the 
stimulation). 

(E) An example =
=()

 heatmap of an animal that received a heat stimulus at the indicated time (red 

line). Note the thermal sensory and other neurons that activate immediately after the stimulation. 

(F) Relative model performance (computed as in 5A, except with only 100 timepoints in the 
moving average) between a model trained before the heat stimulation to one trained after, 
demonstrating sharp change at the moment of the stimulation. Red line indicates moment of heat 
stimulus and shaded red region shows adjacent timepoints that could show change in relative 
model performance, due to a moving average sliding window that overlaps the heat stimulus. 

(G) Three example neurons with median CePNEM fits from animals that underwent the 
stimulation, showing marked and abrupt changes in their behavioral encoding immediately after 
the stimulus.
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Supplemental Figure 1 

(A) Salt learning assay for N2 control animals, compared to pan-neuronal GCaMP7f animals. 
Naïve refers to animals grown on 0 mM NaCl; conditioned (‘cond’) refers to animals grown 
under the same conditions but exposed to 50mM NaCl with food for one hour prior to assay, 
which causes animals to prefer higher salt concentrations. Chemotaxis was measured on a plate 
with a 0mM to 50mM NaCl gradient with sorbitol added to ensure uniform osmolarity. Positive 

A B

C
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values correspond to chemotaxis directed toward high NaCl. Data are shown as means and 
standard deviation across plates. 

 (B)  Un-normalized F heatmap of neural traces collected and extracted from a control animal 
expressing eat-4::NLS-GFP. Since GFP is expressed only in a fraction of cells in this strain, 
perfect neural identity mapping would result in a set of bright horizontal lines (GFP-positive 
neurons) and a set of dark horizontal lines (GFP-negative neurons), while a registration 
mismatch would appear as a bright spot in the trace of an otherwise GFP-negative neuron, or a 
dark spot in the trace of an otherwise GFP-positive neuron. Note that there are very few 
instances of registration mismatches visible in the traces. As described in the main text, we 
estimate the number of neuron identification errors to be 0.3% of frames (see Methods). 

(C) F/F20 heatmap of neural traces collected and extracted from three GFP control animals.  
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Supplemental Figure 2 
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(A) Degradation analysis on each model parameter, comparing the percentage that the error (as 
measured by cross-validated mean-squared error when fitting the model with MSE optimization 
– see Methods) increases when the model is refit with that parameter removed. * = p < 0.05 ** = 
p < 0.0005 (Wilcoxon signed rank test). For reference, black line shows the error increase for a 
model with no behavioral parameters (just an offset parameter so that the model would guess 
each neuron’s mean activity). 

(B)  Simulation-based calibration results for CePNEM. Simulation-based calibration was 
performed by simulating 1997 neurons from CePNEM using behaviors from 4 different animals 
and fitting them each twice, on different time ranges. For each model parameter, the ground-truth 
parameter was ranked within the fitted posterior. If model fitting is perfectly calibrated, the 
ground-truth parameter’s rank should be the uniform distribution. Therefore, for each parameter, 
we performed a χ2 test to distinguish their distribution from the uniform distribution with p=0.05. 
All parameters passed this test, except for the timescale parameter s, which has a very small 
calibration artifact predicted to impact <4 neurons per dataset. See Methods. 

(C) A series of CePNEM model fits to various neurons, showing the model’s ability to fit a wide 
variety of neural tunings to behavior. The model was fit on the first half of the dataset, and tested 
on the second half, revealing that these neurons have robust tunings to behavior across time that 
is well-explained by CePNEM. 

(D) Controls comparing the percentage of neurons that were detected as encoding behavior using 
real GCaMP traces with the same animal’s behavior, using the same GCaMP traces but 
attempting to fit with a different animal’s behavior (essentially a scramble control; ‘wrong 
behavior’), and using GFP datasets. See Methods. 

(E) Linear, L1-regularized decoder models were trained to predict various behaviors (velocity, 
head curvature, feeding, angular velocity, and curvature, respectively) from 11 animals from 
either neurons (blue) or CePNEM model residuals (orange). Decoding accuracy was assessed as 
1 – MSE (decoded behavior, true behavior), averaged over five 80/20 cross-validation splits (see 
Methods). Note that the decoder models do much worse when trained on CePNEM model 
residuals than when trained on the full neural data, suggesting that the model can explain most 
neural variance overtly related to behavior. 

(F) Two neurons that encode angular velocity (defined as longer-timescale head curvature; due 
to the higher frequency nature of head curvature oscillations, longer-timescale is defined here as 
at least 5 seconds). Left: this neuron has a half-decay of 𝜏!/# = 10.0 ± 2.8 seconds, while the 
neuron on the right has a half-decay of 𝜏!/# = 9.5 ± 1.3 seconds. The neuron on the right is 
multiplexed with velocity as well. 

(G) Mean ECDF of the model half-decay time of all neurons demonstrated to encode forward 
locomotion, contrasted with the ECDF of neurons demonstrated to encode reverse locomotion, in 
14 animals. The shaded regions represent the standard deviation between animals. The median 
fraction (across animals) of forward neurons with long timescales (half-decay 𝜏!/# > 20𝑠) was 
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0.12, compared with only 0.03 for reversal neurons; this difference was statistically significant 
(𝑝 = 0.029) under a Mann-Whitney U-Test. 
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Supplemental Figure 3 
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(A) Projections of all neurons from each of four different SWF415 animals into the same UMAP 
space (built from full population of animals; same as in Fig. 3A). Observe that the overall 
structure is very similar, suggesting that the locations of neurons in UMAP space are similar 
across datasets. 

(B) Projections of all neurons from each of two different NeuroPAL animals into the UMAP 
space. These neurons also fill in a similar pattern to that of the SWF415 animals, suggesting that 
the overall neural encodings of the two strains are similar. 

(C) Projections of all neurons from each of two different GFP control animals into the UMAP 
space. These neurons fail to fill most of the space, which is consistent with the non-encoding 
nature of neurons in this control strain. 

(D) Projections of all neurons from 14 different SWF415 animals into the UMAP space, taking 
the median of each neuron’s posterior point cloud in the UMAP space.  Note that the medians fill 
out the same space as when projecting the full posteriors, suggesting the continuity of the UMAP 
space is not merely an artifact of parameter uncertainty.  
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Supplemental Figure 4 

(A) An analysis of clusterability of all neurons that encode behavior. For each dataset, we 
attempted to cluster all neurons that encode behavior using a similarity metric based on the 
difference of the neurons’ GCaMP traces. To determine the optimal number of clusters, we 
computed the Calinski-Harabasz index over varying number of clusters when performing k-
means clustering on the neural traces. Clustering was done on a per dataset basis on all SWF415 
datasets, and the mean and standard error values are plotted. Note that the optimal number of 
clusters in this analysis is 2, which is the minimum number that can be assessed with this metric. 
This suggests that there is not a larger set of discrete subgroups of neurons that are separable 
from one another. 

(B) Cumulative variance explained by the top 20 PCs, averaged over 14 animals. The shaded 
region is the standard deviation across animals. 
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Supplemental Figure 5 

RIH

Dorsal

Ventral

Anterior Posterior Head curvature: Ventral, Ventral during Reverse,
        Ventral during Forward

RIH

Velocity: Forward

OLQD

Head curvature: Ventral, Ventral during Forward,
   More V during F

OLQD

OLQD

Velocity: Forward, reverse slope +,
    Forward slope < Reverse slope

Head curvature: Ventral
Feeding: Inhibited

G

G
C

aM
P 

(z
-s

co
re

d)
G

C
aM

P 
(z

-s
co

re
d)

G
C

aM
P 

(z
-s

co
re

d)
G

C
aM

P 
(z

-s
co

re
d)

G
C

aM
P 

(z
-s

co
re

d)

G
C

aM
P 

(z
-s

co
re

d)

F

E

B

D
C

0

0.05

0.1

0.15

0.2

fo
rw

ar
d 

sp
ee

d 
(m

m
/s

)

+his +his

WT AIM::
HisCl1

0

0.05

0.1

0.15

0.2

re
ve

rs
e 

sp
ee

d 
(m

m
/s

)

- -+his +his

WT

0

0.05

0.1

0.15

0.2

fo
rw

ar
d 

sp
ee

d 
(m

m
/s

)

0

0.05

0.1

0.15

0.2

re
ve

rs
e 

sp
ee

d 
(m

m
/s

)

WT RIC::
TeTx

WT RIC::
TeTx

WT RIC::TeTx
Dor Ven Dor Ven

n.s.

n.s.

0

0

m
ed

ia
n 

he
ad

 c
ur

va
tu

re
 (r

ad
)

m
ed

ia
n 

he
ad

 c
ur

va
tu

re
 (r

ad
)

Dor Ven Dor Ven
WT
-His

WT
+His

Dor Ven Dor Ven
AIM::HisCl

-His
AIM::HisCl

+His

n.s.

n.s.

***n.s. *n.s.

******

n.s. n.s.

n.s.

- -
0

60

120

180

240

fe
ed

in
g 

(p
um

ps
/m

in
)

300

AIM::
HisCl1

- -+his +his

WT AIM::
HisCl1

0

60

120

180

240

fe
ed

in
g 

(p
um

ps
/m

in
)

300

WT RIC::
TeTx

Dorsal

Ventral

Anterior Posterior

AIZ

I1L

I1R

IL2DL
I3

I2
NSM

M3

IL2DR

IL2V

IL1V

IL2

URAD

OLL
URB

IL1
URYV OLQV CEPV

RME

IL1DR

IL1DL
URYD

OLQDL

OLQDR
RMED

RID

URXR
ALA

URXL
CEPD

SMDV

RIA
SAAD

RMDV
AVA

RMD
AVE

AWA ASG

AWB

AWC
AIB

ASH

SMDD

AVD

ASE

AVH

RIVADL AVJ

AIN

M1

RIC
RIM

AUA AQR
AIMSMBD

SMBV

I6

FLP
AVK

ADE

M5

AMso

AMso

A Velocity Head curvature

Analog Dor
Analog Ven

FwdDor
FwdVen
RevDor
RevVen
Feeding

RIB

RID

AVA

AIB

AIM

SAAD

SMDV

AUA

RMDD

SMDD

MC

SAAV

H

Fw
d 

sl
op

e 
+

Fw
d 

sl
op

e 
-

R
ev

 s
lo

pe
 +

R
ev

 s
lo

pe
 -

F 
sl

op
e 

> 
R

 s
lo

pe
F 

sl
op

e 
< 

R
 s

lo
pe

D
or

sa
l d

ur
in

g 
F

Ve
nt

ra
l d

ur
in

g 
F

D
or

sa
l d

ui
ng

 R
Ve

nt
ra

l d
ur

in
g 

R
M

or
e 

D
 d

ur
in

g 
F

M
or

e 
V 

du
rin

g 
F

A
ct

 d
ur

in
g 

F
In

h 
du

rin
g 

F
A

ct
 d

ur
in

g 
R

In
h 

du
rin

g 
R

M
or

e 
A 

du
rin

g 
F

M
or

e 
I d

ur
in

g 
F

Analog Act
Analog Inh

FwdAct
RevAct

encoding tuning

Tuning dictionary for Figure 4A

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 13, 2022. ; https://doi.org/10.1101/2022.11.11.516186doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.11.516186
http://creativecommons.org/licenses/by/4.0/


69 
 

(A) A RGB composite image of one of the NeuroPAL animals that we recorded. The composite 
was constructed by combining images of NLS-mTagBFP2 (shown in blue), NLS-cyOFP2 
(shown in green), and NLS-mNeptune2.5 (shown in red). Using this composite image, we were 
able to label a large number of neurons in this animal. Neural identity was determined while 
making use of all 3D information, but for display purposes here we show a maximum intensity 
projection of a subset of the z-slices from the recording. Therefore, this image does not show all 
the neurons in the head (a maximum intensity projection of all z-slices is too dense with neurons 
to show for display purposes here). 

(B) A legend that demonstrates how to link the encodings in Figure 4A with the neuron tunings 
in Figures 2E-G. To perform this mapping, first choose the behavior (velocity, head curvature, or 
feeding) and reference the corresponding section of the legend. Then, look at the last six columns 
of Figure 4A of the chosen behavior for the neuron in question (which correspond to the six 
columns shown here). Match the pattern shown in those columns with one of the rows of the 
miniature heatmap shown here (if you cannot find such a match, it is likely that there was 
insufficient statistical power to ascribe a tuning to that neuron). Finally, read the tuning 
corresponding to that row; these tunings will be in the same form as in Figures 2E-G (for 
velocity, this will take the form of a tuning diagram, and for head curvature and feeding it will 
take the form of a tuning category). 

(C) Effects of perturbing AIM and RIC neurons on the animal’s behavioral output. AIM was 
inactivated via chemogenetic silencing using the Histamine-gated chloride channel (HisCl) and 
RIC was inactivated via tetanus toxin expression. For both perturbations, we quantified forward 
speed, reverse speed, median head curvature during dorsal and ventral head bends, and feeding 
rates. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, Bonferroni-corrected t-test. n.s., not 
significant. 

(D) Scatter plot of labeling confidence (a qualitative metric determined by person scoring, 
reflecting their confidence that the neuron is correctly identified based on position and multi-
spectral fluorescence; the higher the better; note that neurons with sufficiently low confidence 
were entirely excluded from all analyses in the paper, and this plot only shows values above this 
threshold) and encoding variability (lower value means more consistency). There is no evident 
relationship between these values, suggesting that labeling error does not introduce encoding 
variability. 

(E) Scatter plot of GCaMP ROI match score (the higher the better; see Methods) and encoding 
variability shows no relationship. This suggests that the process that matches the NeuroPAL ROI 
to the GCaMP ROI does not introduce encoding variability. 

(F) Example traces of neuron AVA from 2 different animals to show the previously-described 
reliable tuning to reversals. Red shading indicates reversals. 

(G) Examples of the variable coupling neurons (RIH from 2 animals and OLQD from 3 animals 
shown). On the left column, the NeuroPAL fluorescence images with the neurons identified 
show consistent color combination and location within a given neuron class. On the right 
column, the corresponding neural traces (blue) are shown along with CePNEM fits (orange), and 
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a written description of the encoding properties. Note that the neurons of the same class from 
different animals encode different sets of behaviors. 

(H) UMAP plot showing the posterior distributions of the CePNEM model fits for various 
neurons; each neuron is plotted in a different color. The same set of time points from the same 
animal were used for each neuron’s fit. This plot shows a subset of neurons with largely non-
overlapping tunings, just to illustrate how neurons map onto the UMAP space described in Fig. 
3. 
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Supplemental Figure 6 
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(A) An analysis of what fraction of neurons were detected as changing encoding in our GCaMP 
datasets and simulated datasets. Simulated datasets are labeled ‘SBC’ for simulation-based 
calibrations. These are neurons simulated from the CePNEM model, where ground-truth 
parameters were set to not have any encoding changes.  

(B) Scatterplot of datasets showing that extent of photobleaching is not correlated with detection 
of encoding changes. 

(C) The same dataset in Fig. 5A but also plotting the relative model performance averaged over 
the static encoding neurons. Note that the black line does not show the sudden changes in value 
seen for the purple line. 

(D) Same as (C), but for the dataset in Fig. 5C. 

(E) An example dataset that shows a less synchronized encoding change.  

(F) Two example encoding changing neurons from the animal in (E), one with an abrupt 
encoding change at approximately 12 minutes, and another neuron that appears to have a slowly-
increasing gain to its behavioral encoding over the last ~10 minutes of the recording. 

(G-H) A comparison of the relative model performance averaged across all 11 animals that 
underwent a heat shock (G; same as Fig. 4G) with the same metric computed over 4 animals that 
were not stimulated (H). Note that the baseline animals do not have a sharp change in relative 
model performance at the train/test split, suggesting that the encoding changes in the heat-
stimulation datasets are a direct result of the stimulation. 

(I) UMAP of all encoding changing neurons in non-heatstim SWF415 animals. The projections 
of all neurons in the first time segment (before their encoding change) are shown in red; the 
projections of all neurons in the second time segment (after their encoding change) are shown in 
green. Observe that neurons throughout encoding space can exhibit encoding changes. 

(J) The same analysis as (I), except these animals were subjected to a heat stimulation, and the 
encoding changes are measured before vs after the stimulus. 

(K) A matrix representing which pairs of neurons have simultaneous encoding changes. Each 
row represents the probability that the neuron corresponding to that row had an encoding change 
conditioned on the column neuron changing its encoding. This probability was computed only 
over the set of datasets where both neurons were detected; if this set was empty, the 
corresponding entry in the matrix is left blank (white). The matrix was hierarchically clustered, 
and exhibits striking stereotypy.  

(L) A plot of the fraction of encoding neurons that exhibited encoding change in a dataset, 
compared with the behavioral difference between the first and second half of that dataset. 
Behavioral variability was computed as the sum of the absolute values of the differences (across 
the two time segments) of the following behavioral parameters (each such parameter was 
normalized to the standard deviation of that behavior across all 14 SWF415 datasets): median of 
reverse velocity, median of forward velocity, 25th percentile of head curvature, 75th percentile of 
head curvature, 25th percentile of feeding rate, and 75th percentile of feeding rate. This value 
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provides a general description of how much the distributions of behavioral parameters changed 
across the two halves of the recording. Observe that datasets with large behavioral changes tend 
to have more encoding changes, suggesting that the neural flexibility may be related to the 
observed behavior changing. 

 

Supplemental Item Legends 

 

Movie S1. Example video of baseline recording conditions. A two minute-long excerpt from 
an example neural/behavioral dataset, showing the NIR behavioral recording. Raw video data is 
shown with overlaid information: (i) blue, orange, and green dots are the identified targets for 
worm tracking that were determined during live recording, which allowed us to locate the 
worm’s head and keep the animal centered in view; (ii) black line shows a spline fit to the 
animal’s centerline; (iii) upper left shows time and values of three ongoing behavioral 
parameters: velocity, head curvature, and feeding rate. 
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