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Abstract:
There are many theories of how behavior may be controlled by neurons. Testing and refining
these theories would be greatly facilitated if we could correctly simulate an entire nervous
system so we could replicate the brain dynamics in response to any stimuli or contexts. Besides,
simulating a nervous system is in itself one of the big dreams in systems neuroscience.
However, doing so requires us to identify how each neuron's output depends on its inputs, a
process we call reverse engineering. Current efforts at this focus on the mammalian nervous
system, but these brains are mind-bogglingly complex, allowing only recordings of tiny
subsystems. Here we argue that the time is ripe for systems neuroscience to embark on a
concerted effort to reverse engineer a smaller system and that Caenorhabditis elegans is the
ideal candidate system as the established optophysiology techniques can capture and control
each neuron’s activity and scale to hundreds of thousands of experiments. Data across
populations and behaviors can be combined because across individuals the nervous system is
largely conserved in form and function. Modern machine-learning based modeling should then
enable a simulation of C. elegans’ impressive breadth of brain states and behaviors. The ability
to reverse engineer an entire nervous system will benefit the design of artificial intelligence
systems and all of systems neuroscience, enabling fundamental insights as well as new
approaches for investigations of progressively larger nervous systems.

Why should we reverse engineer a nervous system?
Let us first be clear about what we mean by successful reverse engineering. Independent of
variations in cellular biophysics, if we consider each neuron and muscle cell as computing its
output as a function of the activity of its input cells and spontaneous activity. As such, it is
characterized by a spatiotemporal function mapping input traces into an output trace (i.e. an
input-output function), which represents both synaptic and non-synaptic effects (e.g. through
peptides). In our framing, reverse engineering consists of figuring out the input-output mapping
for all neurons and muscle cells as well as the inputs from the world, and reassembling the
collection of input-output functions into a reliable model of the entire nervous and muscle
system that we can simulate and connect to a simulated body in an outside world (Fig. 1). To be
successful, the model should recapitulate behavior under a range of conditions, stimuli, and
perturbations.

“What I cannot create I cannot understand,” one of Richard Feynman’s famous dictums, nicely
highlights the need to build systems to drive their understanding. With a working model of a
nervous system and its interactions with the body and world, we could test all the hypothesized



neuroscientific models and principles in silico inexpensively and rapidly, and we could develop
candidates for new therapeutic approaches by first testing them on this simulation. Such a
model may also catalyze the design of new information processing systems, intelligent signal
processing systems that solve well-defined goals. The results may inspire a new generation of
artificial intelligence systems that are orders of magnitude more efficient than current ones. We
need reverse engineering to enable such a simulation.

A central goal of systems and computational neuroscience is thus to reverse engineer how
brains convert stimuli, spontaneous activity, and internal states into behaviors (also see (Harel
2003)). Indeed, the National Institute of Health (NIH) and other funders started the BRAIN
Initiative (Insel, Landis, and Collins 2013) with a multi-billion dollar investment to develop new
large-scale neurotechnologies. Major initiatives by other funders include the Human Brain
Project (Markram 2012), MICrONS (funded by the Intelligence Advanced Research Projects
Activity), and the Simons Global Brain Collaborations. The investment of significant resources
into reverse engineering the brain reflects the value of this endeavor.

What will we learn by reverse engineering a nervous system?
If we could decompose a simulation of the nervous system into neural input-output functions, we
could predict behavior in response to any sensory signals (past and present) under any
experimental manipulations and internal states. We could predict the full behavioral repertoire.
And we could predict what every single neuron does as a function of brain state and stimulation.
This ability to build a simulation is one of the definitions used for understanding in the systems
neuroscience community (Kording et al. 2020). But prediction is only the first step, a means of
validating our in-silico model. Ultimately, reverse engineering a nervous system aims to be able
to build an explanatory model of the dynamics of a complete nervous system that captures
adaptation and plasticity at cellular, circuit, whole-brain, and behavior levels. By running in-silico
experiments, it may be possible to translate these neural dynamics to interpretable concepts
such as decision-making, memory, sensory integration, attention, and coordination. This link
between neuronal dynamics (both in the form of input-output relations and whole-brain states)
and interpretable function is, arguably, the holy grail of systems and computational
neuroscience.

By reverse engineering any entire nervous system, we would gain important insights about the
scientific process of biological reverse engineering that could generalize to larger systems,
discovering which information matters, and which shortcuts are possible. We now know synaptic
patterns of connectivity (White et al. 1986; Cook et al. 2019; Witvliet et al. 2021; Brittin et al.
2021) poorly predict interactive patterns of neural activity (Bentley et al. 2016; Yemini et al.
2021; Susoy et al. 2021; Uzel, Kato, and Zimmer 2022; Beets et al. 2022; Ripoll-Sánchez et al.
2022), so what are we missing to understand dynamic operations in these circuits? We know
that as in other animals so in C. elegans, individual neurons can compartmentalize signals and
thus perform multiplex computations (Hendricks et al. 2012), so what resolution do we need to
distinguish these compartmentalized signals? Do millisecond timescales matter or is it enough
to have lower frequency signals? Can we solve these problems with optical imaging only? Can
the information describing the dynamics of nervous systems be compressed into a small
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number of principles? Is it enough to reverse-engineer using data on only some parts from each
individual? We know that the biophysical properties of different cell types matter (Dag et al.
2023), but to what extent must these be understood and modeled? We now know that even in
C. elegans with its invariant cell lineage, the wiring of neural circuits varies across individuals
(Brittin et al. 2021). How can individual variability be taken into account and might data from
many animals produce a meaningful general model? We cannot currently answer these
questions because we have not performed the required experiments and nervous system
modeling. Pioneering reverse engineering in C. elegans can point out favorable approaches
when we try to reverse engineer the more complex nervous systems of rodents and other
animals. Demonstrating reverse engineering of an entire nervous system would clarify what kind
of data we may need for future, increasingly ambitious endeavors.

By trying to reverse engineer a nervous system, we may learn about failure modes. Can we
easily be misled and believe we understand how it works from partial recording, casting doubt
on current approaches to reverse engineer mammalian brains? How probable is it that the
models we fit get the correlations right and the causality wrong (Tremblay et al. 2022)? How
much data of what kind is too little to reverse engineer systems? Answers to these questions
could guide research in all areas where the goal is to understand nervous systems. Reverse
engineering a system may also lead us to discover misleading “principles” in past neuroscience
research.

By reverse engineering a nervous system, we will galvanize and motivate the enrichment and
expansion of technologies that are critical for research across neuroscience. Neuroscience can
scale: we record from thousands of neurons where we used to record from a handful
(Stevenson and Kording 2011). We would optically image a million neurons where we previously
imaged hundreds (Abdelfattah et al. 2022). Similar progress happened in molecular techniques
where, for example, driving the human genome project ultimately made sequencing a cheap
tool used by virtually all labs for countless objectives, and analogously reverse engineering
nervous systems should produce broadly useful techniques. Reverse engineering any nervous
system would require the development of hardware automation, data handling, and sharing, as
well as algorithms and software to extract and analyze neural activity from dense whole-brain
recordings, then incorporate these innovations into a tech stack that can then be scaled up. One
can only imagine the value of scaling up the tech stack enabled by fully reverse engineering a
brain: connectomics, activity, behavior, and models would have to be shared and scaled up in
unprecedented ways. The existence and fact-checking of all these resources would jump-start a
drive toward scaling entire nervous systems reverse engineering and simulation.

In contrast to artificial intelligence systems, the nervous system of C. elegans is compact and
incredibly low-energy consuming and yet able to allow the species to thrive all over the planet.
As such, we may hope to find design principles that we can generalize to AI systems. Of
particular interest here are the basic building blocks, figuring out which computational elements
are used in C.elegans, e.g. in terms of nonlinearities, promises to inform the design of new
low-energy AI systems as well as to make them more resilient in an adversarial world (Agarwal
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et al. 2017). In analogy, being able to simulate the full nervous system of C. elegans may allow
us to design new biological systems to solve technical problems.

Why have we not yet reverse engineered a nervous system?
Experimental limitations and theoretical realities mean that, despite early efforts (Sarma et al.
2018) we have yet to simulate the entire nervous system of C. elegans. We need many
parameters to describe C. elegans and astronomically many to describe mammals. Our
experiments so far have been too limited in breadth but also, focusing on correlations, have not
measured the causal parameters needed for simulations. Indeed, it remains an open and hotly
debated question whether, and how theories can supply the missing parameters.

One reason why these challenges appear insurmountable is that we focus on reverse
engineering rodents, with most of the circuit work in mice. However, we can only ever observe a
tiny part of their nervous system; neither can we record all inputs to a single neuron. There is no
doubt that the relevant models for mice are exceptionally complicated, both in terms of neuronal
and neural processing and in terms of learning during experimental procedures. Because
neuroscientific research takes place mostly on mammals, it is not known how good modern
techniques may be at reverse engineering these circuits (Jonas and Kording 2017). After all,
individual neurons are often weakly correlated with behavior and the enormous numbers of
neurons in mammals preclude a population-level view with the single-neuron resolution
necessary to understand their in-depth circuit dynamics. Human nervous systems have about
86 billion neurons; and even mice have 70 million (Herculano-Houzel, Mota, and Lent 2006),
compared to C. elegans’ 302 neurons (White et al. 1986). Moreover, every cortical neuron in the
rodent tends to receive input from thousands of neurons, on the same order of magnitude as all
the neural connections in the nematode nervous system. In our quest to understand complex
nervous systems we have started with some of the most complicated ones; maybe to get close
to human physiology as soon as possible. Not only do we not know how to simulate such
nervous systems, we do not know what we do not know on the path to simulate them.

We have had much of C. elegans connectome since 1986 (White et al. 1986); further annotated
(Varshney et al. 2011; Chen, Hall, and Chklovskii 2006; Cook et al. 2019); and new datasets
were added (Brittin et al. 2021; Witvliet et al. 2021; Mulcahy et al. 2022). But connectivity alone
is insufficient because without knowing the strength and temporal properties of all connections
and neuronal properties, “... it would not be possible to simply go from the wiring diagram to the
dynamics of even two neurons“ (Marder and Bargmann; Nature Methods, 2013). Despite
impressive progress(Einevoll et al. 2019; Eliasmith and Trujillo 2014), we cannot yet simulate
any entire nervous system.

No discussion of reverse engineering C. elegans can be complete without careful consideration
of the OpenWorm project (Szigeti et al. 2014)(https://openworm.org/). The OpenWorm project
impressively used relatively solid knowledge about the physical environment of the nematode,
the physics of swimming, and muscle properties (Boyle and Cohen 2008; Boyle, Berri, and
Cohen 2012). They used the very partial relevant published information (White et al. 1986;
Varshney et al. 2011) as well as a two-dimensional atlas(Hall and Altun 2008) of nematode
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nuclei. Impressively, OpenWorm even began compiling a list of ion channel inventories for
neurons and models of their biophysical properties (Sarma et al. 2018). However, estimating
neuronal interactions from behavior, or even from ongoing neuronal activity, is essentially
impossible, as many different neuronal properties can produce the same behavior (Prinz,
Bucher, and Marder 2004). Moreover, in the absence of standardized data formats and norms
for data sharing, the transfer of neural data into published papers is equally an irreversible
process. By starting the simulation project, the OpenWorm project took a massive step in the
right direction. But missing are experiments explicitly aimed at producing the kind of data that
would allow a faithful simulation. The available data was the limiting factor all along.

Why a small nervous system? Why C. elegans?
C. elegans has far fewer neurons and neuron-neuron connections making it a great starting
point to measure the causal dynamics captured by its input-output functions. It has established
optical techniques for recording and stimulating at scale (Nguyen et al. 2016; M. Liu et al. 2022;
Bergs et al. 2023; Randi et al. 2022a). Importantly, C. elegans allows us to record and combine
information across animals. Until recently, variations among nematodes were thought to be
relatively unimportant, and physiological parameters relatively conserved (Randi et al. 2022a),
supporting the pooling of data across individuals. More recent evidence of variability in the
neuronal wiring (Brittin et al. 2021) and of neuronal encoding (Atanas et al. 2023 in press)
across individuals suggests a role for individuality. Put together, C. elegans offers a unique
system to address these questions: by analyzing many individuals, we can determine the extent
of variation at the cellular, circuit and behavioral levels, and we can take these variations into
account in bulding computational models. However, there is still considerable disagreement
about the remaining variation across animals (Brittin et al. 2021). It may also be easier as
electrical signals common in C. elegans require lower temporal resolution of both stimulation
and recording (M. B. Goodman et al. 1998; Jiang et al. 2022; Q. Liu et al. 2018; Lockery and
Goodman 2009). As a historical example of this process, sequencing the C. elegans genome
also significantly advanced biology and laid the groundwork for sequencing the human genome
(C. elegans Sequencing Consortium 1998). Most of the benefits of reverse engineering a
nervous system listed above can be realized by reverse engineering a relatively small nervous
system.

C. elegans is small enough to perturb and record calcium signals from each neuron, or even
groups of neurons. Continuous recording and stimulation on a single setup would reach about
50,000 specimens a year, and can be parallelized across setups (Fig. 1AB). Undoubtedly this is
a large number, but it is only an order of magnitude larger than the number of animals whose
behavior was recorded for recent publications (Dag et al. 2023). A very large number of
experiments are possible, clearly enough for at least measuring all pairwise effects (~90k pairs,
e.g., neuromodulator by neurotransmitter).
In C. elegans and only in C. elegans, this approach can sample a massive number of
combinations of presynaptic neurons. In other words, within a single year, we could densely
sample the space of inputs to all the neurons. Within a single year, a single targeted C. elegans
experimental paradigm that is run on multiple setups may obtain more data than all mouse
experiments taken together.
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What should be the deliverables of reverse engineering the C. elegans nervous system?
The result of reverse engineering a brain is a dynamical model from which one could generate
testable predictions for all possible manipulations and experiments. In other words, we want a
causally correct ‘digital twin’ of the biological system.This twin should react to any kind of
stimulation in the same way as the real system. So what is the minimal aspect of what we mean
by wanting to reverse engineer it? Let us go through the deliverables we want to have.

The model should be able to describe the nervous system and the motor output (i.e. muscle
contractions that are behavior). This description will have to include the influence of each
neuron on other neurons and ultimately on behavior to predict stimulation effects. Importantly,
neurons interact through synapses with neurotransmitters, but also through gap junctions,
neuromodulators, and non-synaptic and non-neuronal paths such as glia (Raiders et al. 2021;
Mu et al. 2019) as well as muscle activations and body shape(Cohen and Denham 2019; Zhan
et al. 2023) . We thus need a model that captures interactions of these kind. It should be able to
simulate the entire trajectory of neural activities and thus predict activities and tuning curves at
all times and contexts (Hallinen et al. 2021).

While our conceptualization is built on there being little structured natural variability in wiring,
neural activity, and behavior among individuals, assays should be included in the model as the
measured variability in input-output functions and should replicate the variability in behavior.
Importantly, if there are enough experiments, we can not just measure average properties but
gain relevant insights into the overall distribution, or indeed identify multiple solutions. The
behavioral variability among hundreds of simulations drawn from the measured distribution
should be similar to that among hundreds of animals.

For behavior, we should be able to produce all the basic behaviors the animal performs,
including spontaneous, responsive, and coupled behaviors. The hermaphrodite C. elegans has
an impressively rich behavioral repertoire (Atanas et al. 2022; Hart 2006), constructed of
first-order building blocks including: 1) locomotion behaviors, including forward, backward,
change of speed, steer, turn, and halt; 2) feeding behaviors, more specifically occurrence, rate,
and coordination of pharyngeal pumping (used to collect and crush organic material such as
bacteria); 3) egg laying; 4) defecation; 5) fixed action patterns for mating. This list of behaviors
excludes any kind of behavior that has a timescale long relative to the doable experiments (e.g.
learning). We envision a simulation that replicate these building blocks of all behaviors in a
single model. This means we need a simulation of the whole body, the inputs from the world
around it, and how its effectors in turn affect the world that is around them, at least at a level that
allows interpretation of motor output to behavior. These are the minimal deliverables, in our
opinion, for producing acceptable models of the nervous system of C. elegans. Our expectation
is that such a simulation should replicate the more complex behaviors that are made out of the
first-order ones(Ghosh et al. 2016; Dekkers et al. 2021). Examples of these more complex
behaviors include finding and attracting mates, fleeing from predators, avoiding problematic
chemicals or temperatures, collective behavior, or avoiding parasites. In other words, a good

https://paperpile.com/c/H1Tzfj/4q9X+yntw
https://paperpile.com/c/H1Tzfj/4q9X+yntw
https://paperpile.com/c/H1Tzfj/YtQG+pSpQ
https://paperpile.com/c/H1Tzfj/YtQG+pSpQ
https://paperpile.com/c/H1Tzfj/TdA2
https://paperpile.com/c/H1Tzfj/7qxX+qIGx
https://paperpile.com/c/H1Tzfj/HvN5+EXbw


simulation should cover all the ethologically relevant high-order behaviors that are described for
the nematode.

Feasibility: What do we need to do to reverse engineer a nervous system?
To close the loop we need a model of how the nematode’s sensors translate the state of the
nematode’s body and the environment into neural activity, how neurons interact, and how neural
activities through muscle contraction (effectors) influence the nematode’s body and the
environment. We also need a model for the world because the world is an important part of the
solution to many behaviors. So we need a model of the world, the sensors, and the effectors
(Fig. 1C). With a model of the body and environment in hand, we should be able to calculate the
information going into the animal at all times and how the action of the effectors produces its
future dynamics (Fig. 1D). To get there, we primarily need a sequence of experiments and
modeling that require the components below. Because each component can be achieved by
multiple technologies and approaches, we will describe the need and give a concrete example.

Figure 1: An overview of the proposed approach, demonstrating how imaging,
recording, perturbing, modeling, and simulation interplay.



(1) Staging
Needed: Any approach we can think of will require the use of many animals, as we will need
many thousands of hours of experiments to obtain the statistical power needed to meaningfully
simulate all neurons. We thus need a way of getting nematodes in and out of set-ups with high
throughput. If we were to do that manually, we would require large amounts of human labor.
Another complication would be to standardize a manual workflow, so automatic staging is a
better option.
Potential approaches: Depending on the experimental design, animals could be immobilized,
restricted, or freely moving. Each option introduces challenges in collecting and interpreting the
data but all past experiments have used extensive human labor. Automation could include
robotic manipulation (Li et al. 2022), microfluidics approaches that either move nematodes in an
aqueous solution or small bubbles of oil (San-Miguel and Lu 2013), and machine-vision-based
focusing and positioning (Li et al. 2022). Neuronal calcium imaging data recorded in
freely-moving animals (Atanas et al. 2022; Nguyen et al. 2016; Venkatachalam et al. 2016;
Susoy et al. 2021), by their nature, do not reveal causality. The publicly available data (Atanas
et al. 2022) can be used to test and refine simulated models constructed from input-output
functions.
A concrete potential solution: Microfluidics can be used to get nematodes onto a microscope
stage. We would have a reservoir of age-synchronized animals, microfluidically introduce
animals to the chemogenetics reagents, and sequentially automatically collect each animal to
be post-processed or assayed. We would develop a microfluidic system that places ten
chemogenetically paralyzed adult hermaphrodites next to each other to fill a rectangular field of
view [REF Adela Ben-Yakar]. Either way, microfluidic technology (San-Miguel and Lu 2013) and
automation (Li et al. 2022) are well-established in C. elegans and appear to pose no relevant
risk to the project.

(2) Microscopy
Needed: The nervous system of C. elegans is distributed along its body. About two-thirds of the
302 neuronal cell bodies are in a head ganglion and the rest split between a tail ganglion and a
ventral nerve cord. Animals are about 1 mm in length and the maximal thickness of the nervous
system is about 50 microns. This volume should be imaged at a sampling rate of at least 10 and
preferably 100 Hz, requiring some progress relative to today’s typically slower rates (Atanas et
al. 2022). We will need one microscope for each set-up (although we could place multiple
animals in the same field of view) with high enough resolution to be able to resolve individual
neurons as we need to identify and match them across experiments. Importantly, we need to
overcome field of view limitations, where typical microscopes have a field of view that is too
small for fitting the entire worm. Fortunately, neuronal cell bodies are large enough that
diffraction-limited imaging should be sufficient to resolve the relevant signals, in particular, if the
relevant indicators can be localized to the soma. Importantly, we will have to design the setup
specifically for the goal of automated, large-scale systems identification.
Potential approaches: Because diffraction-limited microscopy of fluorescent indicators is
expected to be sufficient, there are many possible configurations (Lemon and McDole 2020).
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This includes various light-sheet and spinning disk confocal designs that can scan this volume
at the required sampling rate. It also includes the more sophisticated two-photon setups that
allow exceptional precision in space, e.g., for stimulation.
A concrete potential solution: An inverted SCAPE2.0 inverted microscope (Voleti et al. 2019)
with a microfluidic stage would be suitable for our approach. The inverted design provides
access to liquid handling and stimuli and the SCAPE2 can scan the required volume (1 x 1 x
0.05 mm for ten immobilized animals) at about 10 Hz. This volume is sufficient to image ten
animals.

(3) Neuron Identification
Needed: For each neuron that we record from we need to be able to assign it reliably to one of
the 302 neuron identities. To do so, we will need to automatically identify each neuron from
optical stacks after recording.
Potential approaches: A large number of solutions are possible. High-resolution, potential
super-resolution, stacks, e.g. from expansion, would allow solving the problem by machine
learning from large datasets. NeuroPAL (Yemini et al. 2021), a multicolor transgene allows for
nervous-system-wide neuronal identification using a combination of reporters and colors to
generate an invariant color map across individuals radically simplifying the identification
process. Alternatively, machine learning may enable identification from large sets of multimodal
data (Kirillov et al. 2023). This field of identification is quickly maturing.
A concrete potential solution: We would build on NeuroPAL (Yemini et al. 2021) animals. For
these approaches, techniques are quickly getting standard but will still require additional
software development (Skuhersky et al. 2022) and the development of novel methods for
aligning neurons across thousands of animals. Importantly, it is sufficient to solve the
identification problem in most animals.

(4) Stimulation and Recording
Needed: The core of reverse engineering a nervous system is figuring out how interactions
among components (here neurons) shape the dynamics of information processing; we need to
know how a neuron’s output is caused by all its input cells (including those acting through
neuromodulators) and how a neuron’s output affects other neurons and muscle cells. In other
words, we need the interactome which is a generalization of the connectome. This interactome
is complicated because there are both synaptic interactions and neuropeptide interactions
(Ripoll-Sánchez et al. 2022; Beets et al. 2022), but there have been recent attempts at reverse
engineering a larger number of interactions (Randi et al. 2022b; Uzel, Kato, and Zimmer 2022).
These approaches have, however, only revealed the average linear neuron-to-neuron
interactions instead of the full nonlinear interactions. We need to know how stimulating (or
inactivating) combinations of neurons affect the activity of each neuron. If we had this
information, we should be able to calculate each neuron’s output given its inputs.
Potential approaches: There are many ways of stimulating nematode neurons. We can stimulate
them through direct physical effects (Suzuki et al. 2003; O’Hagan, Chalfie, and Goodman 2005;
Ramot, MacInnis, and Goodman 2008; Miriam B. Goodman and Sengupta 2019), stimulate
them electrically (M. B. Goodman et al. 1998), or stimulate them through optogenetic means
(Husson, Gottschalk, and Leifer 2013; Nagel et al. 2005). We can do so with single-photon or
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multi-photon approaches, trading of price and precision. All of these approaches are well
established, but optogenetic methods are particularly scalable. There are also many ways of
recording from nematode neurons. We can record from them electrically (M. B. Goodman et al.
1998), with calcium (Kerr et al. 2000), or by voltage imaging with genetically encoded sensors
(Azimi Hashemi et al. 2019). Neurons are the most obvious target for stimulation but a complete
interactome might require stimulating other cells such as glia (Perea et al. 2014). There are a
large number of interactions to measure. And the main question is which kinds of approaches
will best scale to very large numbers.
A concrete potential solution: We would generate transgenic nematodes that stochastically
express an optogenetic activator in a random subset of neurons or muscle cells (Aoki et al.
2018). Given our experience with Brainbow, this is doable and presents minimal risk. For
example, if each neuron has a 1/150 chance of expressing the activator, we expect most
(~80%) of the animals to express the activator in one, two, or three neurons. A few animals will
express it in more than three neurons, while 10-15% of animals will not express the activator in
any neuron and will serve as an internal control group. Light activation should be as brief as
possible and then as low as possible. We envision optogenetic stimulation on only one channel,
as this makes experiments far cheaper, with the potential to add 2-photon stimulation as our
knowledge about the system matures. We would use genetically encoded calcium indicators
such as GCaMP as a reasonable proxy for neuronal activity. To reduce intrinsic activity and
multisynaptic activation, we can subtly inactivate all neurons and muscle by making use of
transgenic animals expressing a histamine-gated chloride channel (Pokala et al. 2014).
Standard machine-learning approaches would then be used to identify the interactions.

(5) Quality control
Needed: Countless variables affect the results of the kinds of experiments we sketch here. This
ranges from the genetic background of the nematodes (cites), to the properties of the
microscope (cites), to the expression patterns of the indicators (cites). As such, careful
monitoring of the overall pipeline is essential. To be able to pool results, the results must be all
comparable.
Potential Approaches: There are two kinds of well-established approaches. One, as in the case
of the International Brain Lab (cites) is to establish standards that are held up in many labs
working in parallel. The other, as in the Allen Institute (cite), is to rather establish one central
location where large-scale experiments are made with a team that is very much centered
around quality control.

(6) Annotated Connectomes
Needed: To further understand the interactome data and possibly predict neuronal function, we
want to have a specific molecularly annotated connectome (Bhattacharya et al. 2019; Taylor et
al. 2021). In other words, we want to know the whole structure of the nervous system of animals
from which we collected input-output data, but also where key molecules are expressed. This
kind of information can significantly cut down on the set of models we need to consider.
Potential approaches: Serial electron microscopy and several super-resolution approaches can
be adapted to image the morphology of the nervous system of collected and fixed animals.
These are mostly low-throughput methods. Expansion microscopy is the only approach we are
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aware of that could provide molecular annotation in addition to morphological data and at a
relatively high throughput (Alon et al. 2021; Shen et al. 2020).
A concrete solution: For a fraction of the animals, after stimulation and recording, we would
extrude animals from the microfluidic device, expand (Yu et al. 2020), and identify a host of
molecules in 3 dimensions, along with the full connectome, which, in turn, will require advances
in computer vision such as automatic proofreading.

(7) Model fitting
Needed: We need to be able to fit models to the data that are good enough so that they can
enable a faithful simulation that is good enough that it generalizes to other situations and
conditions.
Potential approaches: There are two major branches for such fitting. There is a school focusing
on detailed models (in the sense of cell properties and cable equations, (Hines and Carnevale
1997; Kim, Leahy, and Shlizerman 2019; Kunert, Shlizerman, and Kutz 2014) and embodiment
(Kim et al. 2019)). There is another school focusing on setting up machine learning models, e.g.
by fitting deep learning models(Tanaka et al. 2019; Benjamin et al. 2018; Yamins and DiCarlo
2016). In all cases we would have to fit models where we estimate neuron outputs as a𝑦

𝑗
(𝑡)

function of neuron inputs . Subsequently, we build in biological prior knowledge, e.g. the𝑥
𝑖
(𝑡)

stronger interactions between nearby synapses, e.g. by adapting the standard attention function
used in transformer models.
A concrete solution: One could set up a deep learning system based on transformers (Vaswani
et al. 2017) for every neuron. We may tokenize the input state as a set of discrete descriptors
for each input neuron’s state learned using a Vector Quantised-Variational AutoEncoder𝑥

𝑖
(𝑡)  

(VQ-VAE) (Van Den Oord, Vinyals, and Others 2017). This is a standard strategy to get the
continuous states (e.g. of the neurons) with minimal loss into a discrete format that is easy to
model. An alternative is to model the relevant vectors directly without tokenization.

(8) Open Science
Needed: As we are proposing a project that will require a concentration of effort and resources,
we need an open community. And we need that community for quality assurance - the data may
have problems that we do not anticipate.
Potential solutions: We can try and produce a governance structure that minimizes that risk.
Another possibility is to be absolutely open.
A concrete solution: We suggest doing both. We want to engage the relevant community to
guide the approaches and open science has been the standard approach in the C. elegans
field. We insist on radically open science in which code and data are made available within three
months of the time at which they are developed or collected.

(9) Diverse Science
Needed: This project will require integration of scientists with expertise in instrumentation,
genetic analysis, molecular tools, behavioral neuroscience, cellular biophysics, computation,
data science, and theory.
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Potential solutions: Recruit scientists broadly and empower team members to cross-train in
multiple disciplines. Intentionally build an inclusive community of scientists and embed a
tradition of design and data review into teamwork.

Power calculations
It is notoriously difficult to estimate statistical power in the context of machine learning
applications. However, there are two things that we can do. (1) We can produce a simulation
that models the relevant problem and see how well we can reverse engineer that simulation to
obtain useful intuition. (2) We can use special cases, such as linear models with nonlinear basis
functions, to obtain closed-form estimates.

(1) One simulation strategy is to produce virtual connectomes of varying scale (different
numbers of neurons and different densities of connections between them) and varying
complexity. There are of course many ways to vary simulated neuron complexity, but one
valuable approach is to change the number of input parameters that a neuron uses in its
activation transfer function. A second valuable dimension is how much of its own and its
synaptic partners’ history a neuron takes as input — where a perfectly Markovian neuron takes
only the latest state of the network as input and an unrealistically complex neuron takes as input
all of the complete history of the entire network. Of course, real neurons fall in the middle of this
complexity scale, though we do not know where. It is not hard to empirically evaluate how much
recording time is required to analyze the complexity of a neuron (Fig. 2).

(2) We find with considerable amounts of uncertainty (because we do not yet know how
complex C elegans neurons are) that we will need to continuously record from the entire C.
elegans nervous systems for the equivalent of about 250 days (see Appendix 1: analytical
power calculations). As such, the proposed experiments should be well-doable, even if we use
conservative calculations.



Fig. 1. A simple linear model of connectome dynamics can be
reverse-engineered in the manner described here. Predictions on
a 100-neuron model benefit somewhat from longer-duration
recording time, but are dramatically improved by inducing artificial
perturbations during recording. Prediction error is most effectively
reduced through a combination of the two.
The dynamics of this system are described in Appendix 2.

Going to many nervous systems
Ultimately, the value of reverse engineering a nervous system is that it will make reverse
engineering nervous systems accessible. Being able to compare nervous systems is, arguably,
much more interesting. What goes wrong with disease? How can we scale things up? How do
things differ across species? Just like the human genome project enabled sequencing the
genomes of many humans, adding much more value, reverse engineering a nervous system
promises to open the floodgates to reverse engineering many other nervous systems
(Vogelstein et al. 2016).

Scaling to larger nervous systems
Reverse engineering C. elegans should just be a step in the path toward understanding nervous
systems that are more like our own. There are of course many differences, in terms of size
(human brains with about 86 billion neurons vs 302 in C.elegans), in terms of computational
primitives (most cells in C. elegans do not spike at the millisecond timescale; (M. B. Goodman et
al. 1998; Jiang et al. 2022; Q. Liu et al. 2018; Lockery and Goodman 2009), and in terms of
complexity of brain organization. However, we can sketch what a path toward larger brain
understanding can look like. Power calculations make the identification of the input-output
function of cortical neurons in humans, that have of the order of 10,000 inputs from stimulation,
seem infeasible. However, through the work that we argue needs to happen in this paper, we
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will not merely establish causal interactions between C. elegans cells, we will also establish how
to predict them from annotated connectomes. Annotated connectomes can readily be scaled up
to much bigger nervous systems. We also expect that there are some principles (some known,
most probably still unknown) that may carry over from small nervous systems to larger ones.
The important thing is that the work on reverse engineering C.elegans will provide a
rosetta-stone-like translation between the language of annotated connectomes and functional
properties. This insight into the causal interactions and this ground truth-based approach can
then be scaled up. For example, we could analyze the kinds of interactions in human brain
organoids producing ground truth causality and then scale up from there. But we will need the
whole nervous system scaling to know how to put together such local information with other
factors to get at the causal flow of information in larger nervous systems.

Conclusions
Here we have outlined how reverse engineering the entire sensory-neuro-motor system of C .
elegans may be possible, producing, for the first time, a real understanding of how an entire
brain computes. Reverse engineering the causal interactions in the nervous system of C.
elegans promises to establish in-silico simulations as a way of accelerating neuroscience. It
promises to teach us how to run experiments that reveal the causal ways of how circuits work.
We would learn about the many potential failure modes of reverse engineering. We may learn
how to build powerful, error-robust, energetically-economical, synaptically-compact AI systems.
A concerted, open effort would galvanize the development of approaches to help understand
the brains of more complicated animals, like our own, promising a new era of causal
neuroscience. The time has come to reverse engineer the C. elegans nervous system.
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Appendix 1: analytical power calculations

General setting. We need to describe the dependency of the neuron’s output on its inputs which
we can formalize as: . Let there be noisy observations, abstracting away time, of the𝑦 = 𝑓(𝑥) 𝐿

form with isotropic Gaussian noise as neural observations generally𝑦
𝑖

= 𝑓(𝑥
𝑖
) + η

𝑖
η

𝑖
~𝑁(0, σ2𝐼)

have channel noise. In this context, represents the identity matrix and denotes the noise𝐼 σ2

variance. In this setting, we want to ask how well we can approximate by function fitting on𝑓(𝑥)
limited amounts of data. We want to describe this function so that we can predict it for all
possible inputs . This thus covers all possible behaviors of the nervous system for any stimuli𝑥
and behaviors as well as the response to any internal perturbations. This setting protects us
from having a fragile model that only performs well inside the specific contexts studied in an
experiment.

Analytical power calculations

Linear setting
Instead of the general setting, let us operate in one in which we can describe the function as a
sum of terms of relevant basis functions:𝐾

𝑓(𝑥) =
𝑘=1

𝐾

∑ 𝑊
𝑘
𝑔

𝑘
(𝑥)

with a set of appropriate basis functions , which may, e.g. describe synapse-synapse𝑔
𝑘
(𝑥)

interactions or local dendrite interactions, and weights which describe how important each of𝑊
𝑘
 

the basis functions is. Now, to be clear, real neuron transfer functions can not meaningfully be
written in this form, for example because they have an output nonlinearity. However, while
output nonlinearities can e.g., set half of the outputs to be zero, they are unlikely to massively
affect the power calculations because real neural output nonlinearities tend to be relatively
simple smooth functions(Kato et al. 2014). Importantly, in this scenario, due to the linear nature
of the identification problem, we can use the well-established theory for linear systems
identification to obtain solid intuitions.

How many such basis functions should we need for a neuron? No one knows. In a super
simplistic world, neurons could mostly be linear, in which case we would just have one basis
function for each synapse and we could get away with K=30. In a super complicated world,
every synapse could be multiplied together into a basis function and we would need K>>1
million. However, in reality, complexity will be way higher than linear as we know that the
neuromodulators have major modulating effects. But clearly we do not expect all combinations
to meaningfully interact, e.g. because many synapses are far away from one another. As such,
we may believe that the right K will be somewhere between K=1,000, allowing interactions
between any pair of synapses, and K=100,000 allowing many three-way interactions. We will
thus use K=10,000 as our estimate, knowing full well that uncertainty about this number of
parameters needed to describe neurons is high.

https://paperpile.com/c/H1Tzfj/dkQw


Because noise is isotropic in our system, we can use whatever basis function system we like to
do our analysis. Importantly, in the basis function of the singular vectors (components) of the

system (~the system discovered by PCA), the dimensions stop being coupled to one𝐸[𝑥𝑥']
another, and we can view the identification problem as uncoupled estimates. Instead of𝐾
estimating the weights in the inconvenient original coordinate system of where all dimensions𝑋
have the same noise but complex covariance structure, we will thus estimate all our weights in
the convenient coordinate system of the relevant components, where all dimensions are
uncorrelated but have different noise levels. We will now call the transformed input activities with
means subtracted and whenever we use indices i we imply that we are in this transformed𝑥

𝑖

coordinate system. Importantly they are now whitened, have unit variance and zero covariance
with one another.
In that coordinate system we have our weight estimates:

β
𝑖

^
= < 𝑥

𝑖
𝑦 > / < 𝑥

𝑖
𝑥

𝑖
>

Now, in this estimate, errors come from misestimations of the first and the second term.
However, when whitening the signals, the are being divided by . And for the difficult to𝑥

𝑖
𝑃𝐶

𝑖

estimate dimensions with , our error estimate is entirely dominated by the second term𝑘 >> 1
in the standard error expansion equation. This term has noise level of
σ

𝑖
≈ σ

𝑃𝐶
𝑖

𝐿

If all PCs are of the same size (say 1), then we obtain the well known result:

||β − β
^

||
2

= σ 𝐾
𝐿

But if the PCs are distinct as they always are in practice, we instead obtain a variance correction

In practice, PC spectra are extremely heavy-tailed. If we record even just a few hundred
neurons, we generally find that the smallest PCs are smaller than the largest PCs by a factor of
thousands. As such, estimation becomes very difficult, in particular given that in mostσ ≈ 𝑃𝐶

1

systems. The intuition for all this is simple, small singular values have only a tiny bit of
associated variance. For example, if we have two convergent input neurons that are strongly
correlated with one another then the weight associated with the first PC (the average of the two
neurons) is easy to estimate while the weight associated with the second PC (the difference of
their contributions to their shared target) is hard to estimate as it hard to assign credit to either
of the neurons.

This is where stimulation comes in. If we randomly stimulate in the space of the then we are𝑔
𝑖

effectively adding the identity matrix to the covariance matrix. Stimulation thus makes all
singular values become similar to one another, and reduces the difference between the large
and the small singular values. In relevant simulations stimulation can typically get this correction
factor (condition number c) to be roughly 1 (or at least not larger than 3), see below. Let us go
back to the example of the two correlated input neurons. The stimulation will make them less
correlated, making it easier to assign credit to either of the inputs.



So the calculations of power are relatively simple from a mathematical perspective. Suppose an
analysis of one neuron with just one input will take, say, 10 seconds (enough for order 100
observations, which we will call ) to identify the transfer function. If a neuron has K∆𝑡

0

parameters we will instead need . We assume a worst-case c=3 and hence that we𝑐2𝐾∆𝑡
𝑜

would need 900,000 seconds = 15,000 minutes ≈ 250 days. In other words, we would need
massive but tractable amounts of data.

Appendix 2: empirical power calculations

Here we compute empirical results of a timeseries linear dynamical model on a large sample (N≈1000) of
randomly generated connectomes. Dynamics at time-step t+1 are defined as:

𝑌
𝑡 

=  𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐((𝐴 × 𝑋
𝑡 

+ σ
𝑡
) − µ) 

Where A is the (static) connectome adjacency matrix, is the input-state at time t, σ is a variability𝑋
𝑡

(standard deviation) which is generated anew at each timestep, and μ, a threshold / offset value
which remains constant during the simulation.

Taking from biology the understanding that such dynamics operate at the millisecond timescale,
we can calculate that one timestep in our simulation corresponds roughly to 20ms of real-world
wallclock time, and therefore a simulation of 1,000 timesteps corresponds to 50 seconds (the
purple line in Figure X).

We randomly sample the number of perturbations and compute the recording time to evenly
space these perturbations across the duration. Connectivity (density of A) is sampled as a
uniform value between .01 and 0.5, broadly accommodating the synaptic density of C. elegans
(0.06) (Matelsky et al. 2021). The σ parameter is randomly sampled along the log distribution
from [0.01-10.0). μ was set to 0.5 for these simulations, and the scale of the perturbations, as a
ratio of the number of neurons randomly influenced in each simulation (one value per
simulation) was randomly uniformly sampled on the interval [0.01-0.5).
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