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Animal behavior varies across different timescales. This in-
cludes rapid shifts in behavior as animals transition between
states and long-term changes that develop throughout an or-
ganism’s life. This review presents the contributions of sex
differences, individuality, and internal states to behavioral
variability in the roundworm Caenorhabditis elegans. Sex is
determined by chromosome composition, which directs
neuronal development through gene regulation and experience
to shape dimorphic behaviors. Genetically identical individuals
within the same sex and reared in the same conditions still
display distinctive, long-lasting behavioral traits that are
controlled by neuromodulatory systems. At all life stages, in-
ternal states within the individual, shaped by external factors
like food and stress, modulate behavior over minutes to hours.
The interplay between these factors gives rise to rich behav-
ioral diversity in C. elegans. These factors impact behavior in a
sequential manner, as genetic sex, individuality, and internal
states influence behavior over progressively finer timescales.
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Introduction
Individual animals of a single species can exhibit a vast
range of different behavioral outputs that vary based on
their sex, life history, individuality, and sensory
www.sciencedirect.com
environment. This variability is essential for animals to
adapt their behavior to an endless set of environmental
conditions. While studying aggressive behaviors, the
evolutionary biologist John Maynard Smith noted that
variability is also a necessary condition for selection [1].
In behavior, as in genetics, variation provides the raw
material of evolution.

The nematode Caenorhabditis elegans (C. elegans) has long
been a pivotal model organism in the study of biology
due to its simple nervous system, well-characterized
development, and ease of genetic manipulation. Its
compact, well-defined nervous system has also made it a
premier model organism for systems neuroscience since
it is feasible to relate the functions of specific neurons
and circuits to behavior in this simple system [2]. This
review explores the mechanistic sources of behavioral
variability in C. elegans, focusing on three critical effec-
tors: sex differences, individuality, and internal states.
Sex differences
In sexually reproducing organisms, sex determination
mechanisms set the stage for sex-biased phenotypes,
some appearing early, even before gonadal maturation,

and others only after sexual maturation. In C. elegans,
there is only one sex chromosome, X, and the mecha-
nism of sex determination is based on the ratio of sex-
chromosomes (X) to autosomes [3]. Animals carrying
two X chromosomes are hermaphrodites (so-called for
their ability to produce sperm and self-fertilize),
whereas males carry one X chromosome (X0). The dif-
ference in the genetic composition of each cell of males
and hermaphrodites generates a sex-dependent varia-
tion of individuals, beginning at the one-cell zygote. X
chromosome dosage is translated into sexual fate via

many genes that interact in a complex regulatory
cascade. One crucial readout of this cascade is the
expression of TRA-1, the master regulator of sexual
differentiation in C. elegans [4]. In XX somatic cells,
TRA-1 is ubiquitously expressed and specifies female
development, whereas its absence allows male devel-
opment. TRA-1 acts cell-autonomously to drive female
fate, allowing the sexual differentiation of each somatic
cell to occur independently of hormonal signals. This
autonomy in TRA-1’s action allows researchers to build
direct links between individual neurons and behavior,
controlling for sex as a biological variable. In the nervous
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system, TRA-1 expression in neurons is initially
restricted to a small set of neurons, but as development
progresses, it increases variability among individuals [5].
It will be interesting to investigate how this striking
variability in the pattern of TRA-1 accumulation in the
nervous system translates into animal-to-animal vari-
ability in the extent of sexual differentiation in the
nervous system.

The differences between the sexes extend beyond
reproductive roles, influencing behaviors such as mating,
foraging, and response to environmental cues, which
have been linked to differences in neural circuitry and
gene expression, as described below.
Individuality
Even when they are genetically identical and reared in
the same environment, different individuals exhibit
behavioral differences that are stable over long periods,
spanning hours and days [6e9]. These consistent inter-
individual behavioral differences define the property of
individuality within populations. Understanding how
individuality patterns develop across an organism’s
lifespan requires behavioral monitoring of single in-

dividuals throughout their developmental trajectory,
under tightly controlled environmental conditions. The
nematode C. elegans, with its short development time of
just 2.5 days from egg hatching to adulthood, provides an
ideal model for studying the genes, circuits, and envi-
ronmental influences that shape inter-individual
behavioral variation across developmental timescales
[10e12]. Such variable behaviors among individuals
include differences in exploratory behavior, instanta-
neous speed, and fast-timescale postural changes iden-
tified using unsupervised methods. Similarly, at the
neuronal activity level, variable neuronal responses were

also observed among isogenic individuals when exposed
to the same stimulus [13]. As described below, studies
have started to reveal specific neuromodulators and
environmental effects that control behavioral variation
within populations.
Internal states
Over the timescale of minutes to hours, the C. elegans
nervous system switches between a wide range of in-
ternal states that influence how animals respond to
external stimuli and behave. The generation of these
states is influenced by the sensory environment, like the
presence of food or harmful chemicals, so that animals
alter their long-term behavioral patterns in a manner
that matches their needs. Animals deprived of food alter
their food-seeking behaviors based on their internal

state of hunger [14,15]. Prolonged exposure to stressful
stimuli can elicit short-term arousal, followed by stress-
induced sleep [16e18]. In the context of foraging, ani-
mals switch between many distinct behavioral states
that depend on their immediate sensory surroundings,
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feeding state, and other factors [14,19e21]. The inter-
nal state can also modulate how animal prioritize their
needs; for example, starvation in males leads to the
temporary prioritization of feeding over mate-searching
[22]. As is described below, a common theme in the
mechanistic underpinnings of these states is the
involvement of neuromodulation, which can alter neural
circuit function over these long timescales.
Behavior in a Waddington landscape
The behavioral outputs that adult animals exhibit are
influenced by their genetic sex, individuality, and cur-
rent internal state. These factors are naturally organized

in a sequential fashion: genetic sex is specified early in
development and sexual maturation occurs throughout
development; individuality arises over development and
persists for an entire lifespan; and internal states shift
over minutes to hours at all life stages. These relation-
ships can be captured as a Waddington landscape, which
was originally used to describe the gradual progression of
developmental trajectories (Fig. 1) [23]. In this frame-
work, the behavioral patterns that an individual can
express across development are constrained by the early
influence of genetic sex, followed by changes due to life

history and individuality, and finally, state-dependent
changes. In the remainder of this review, we describe
the neural mechanisms that underlie these sources of
behavioral variability and highlight how they interact to
shape behavior.
Themes

1. Genetic sex determines internal state responses
Like other organisms, in C. elegans genetic sex plays a

pivotal role in determining the organism’s responses to
various internal states, such as stress, hunger, and
reproductive readiness. Initially determined by the
number of sex chromosomes, a genetic program distin-
guishes hermaphrodites and males, culminating at
sexual maturation, where overt sex differences appear
[24]. The presence of sex-specific neurons (2 in her-
maphrodites, 93 in males) further diversify the neuronal
network and its behavioral outputs. This sexual dimor-
phism in gene expression and neural circuitry ensures
that each sex adopts behavior and physiological re-

sponses that are optimized for its unique reproductive
and survival strategies.

Well-fed males usually prioritize mate searching and
exploration over feeding [22,25]. This state-dependent
food-leaving behavior is regulated by several mecha-
nisms, including the activity of male-specific neurons
[26] and PDF-1 neuropeptide signaling through PDFR-
1 in sex-shared neurons [27]. The lower attraction of
males to food is mediated by low expression levels of the
www.sciencedirect.com
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Figure 1

A Waddington landscape captures the effects of genetic sex, individuality, and internal state on behavioral variability in C. elegans. (a) The
Waddington landscape [23] is a conceptual model used to illustrate how genetic and environmental factors interact to shape developmental pathways in a
stable yet adaptable manner. Here, in the context of behavior, it represents developmental patterns of behavior and transitions between states as a ball
rolling down a landscape, where each valley corresponds to a semi-stable state, influenced by both the organism’s genetic makeup (e.g sexual identity),
long-term individual biases, its internal states, and environmental interactions. Within the valleys of the landscape, individuals can transition between
states.
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chemoreceptor ODR-10 in the sensory neuron AWA,
which senses diacetyl, a food-associated odor [28,29]. In
hermaphrodites ODR-10 levels are high, determined by
the genetic sex of AWA. ODR-10 expression levels in

males are sensitive to food deprivation: in the absence of
food, its levels increase, causing increased male attrac-
tion to food. Interestingly. TRA-1 seems to control, at
least partially, the starvation-induced activation of
ODR-10 [30]. These results highlights how sex-specific
gene regulatory mechanisms can underlie the balance
between behavioral states (Fig. 2a).

Two recent studies demonstrate the intricate mecha-
nisms by which learning is also modulated by sex-
specific internal states. One study showed that while

hermaphrodites are able to learn to avoid pathogenic
bacteria (PA14) [31,32] after a short training period,
males do not learn to avoid the same bacteria over the
same time scale [33]. This sex-specific learning
discrepancy is attributed to differential activity in AWB
and AIY neurons and the differential expression of the
neuropeptide receptor npr-5, an ortholog of the
mammalian NPY receptor, which modulates neuronal
activity and thus learning in males. Investigation of the
neuronal representation of the pathogen exposure
www.sciencedirect.com
experience reveals distinct sex-specific activation levels
and responses to PA14 stimuli in the sensory neurons
and interneurons. Interestingly, NPR-5 regulates male
learning by modulating sensory neuronal activity. These

results suggest that genetic sex can influence how sen-
sory information is encoded or processed. Moreover, the
ability of males to learn depends on their sexual status,
placing the sexual state as an important determinant of
the internal state, which in turn influences the specific
behavioral output of the individual.

A second study focuses on the differential impact of
rewarding and punishing experiences based on sex [34].
It demonstrates that males and hermaphrodites react
differently to the same stimuli, after a bout of condi-

tioning where animals were exposed to the stimuli in the
absence or presence of mates. Sexual conditioning to
salt is regulated by the PDF-1 neuropeptide [35], which
modulates odor preference after sexual conditioning.
Interestingly, PDF-1 can encode positive or negative
valence, depending on the neuron it is secreted from
and its target cells. These results underscore genetic sex
as a determinant in the neural circuitry underlying how
neuromodulators direct learning. Together, these
studies reveal that genetic sex determines not just
Current Opinion in Neurobiology 2025, 91:102984
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Figure 2
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Mechanisms that link genetic sex, internal states and individuality to behavior. (a) Receptor expression is modulated by genetic sex and internal
states. In hermaphrodites, high levels of ODR-10 in AWA control attraction to Diacetyl (food source). ODR-10 expression in well-fed males is low due to
the inhibitory action of DAF-7 secreted from ASJ, that activates DAF-2 signaling in AWA, leading to downregulation of odr-10 expression. In starved
males, ODR-10 levels increase, prioritizing feeding over mate searching. (b) The ASJ interneuron integrates a wide range of developmental, sensory, and
state-related stimuli to control its expression of the daf-7 gene, which influences the exploratory behavior of the organism. (c) Individuality in behavior is
established across development, reflected by consistent behavioral activity patterns across stages that are variable among individuals (shown as a
schematic ON-OFF trace for each individual). Different colors and shapes of the worms are meant to highlight their individuality. Serotonin and early-life
starvation promote individuality in roaming and dwelling behavior and the neuronal genes daf-7, and npr-1 restrict individuality in roaming speed.
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features of baseline behavior but also how organisms
interact with and learn from their environment. These
studies also highlight a key role for neuropeptide
signaling in sexually dimorphic behaviors. Recent ad-
vances in mapping the full neuropeptidergic connec-
tome of C. elegans [36,37] will facilitate the identification
of additional critical peptidergic systems.

2. Behavioral individuality is shaped by neuro-
modulatory systems
Neuromodulatory pathways are known to establish in-
ternal behavioral states that can be further modified by
the past and current environmental experiences of an

individual [38,39]. Specifically, central neuromodulators
such as biogenic amines can affect the levels of inter-
individual variation. For example, in the fruit fly
D. melanogaster, a decrease in serotonin activity was
shown to generate higher individual consistency levels
in phototactic preference within isogenic populations
[8], but decreased individual consistency in olfactory
preference [40]. In C. elegans, the effects of neuro-
modulation on long-term patterns of individuality were
studied across the complete developmental trajectory
[10e12]. Long-term imaging of single worms at high

spatiotemporal resolution and under tightly controlled
environmental conditions revealed that a fraction of
individuals within the wild-type populations had
consistent biases in their roaming and dwelling behavior
throughout all developmental windows (Fig. 2c). The
neuromodulator serotonin, released by the NSM and
HSN neurons, exerts strong control over roaming and
dwelling states [21,41e43]. High serotonin levels in-
crease dwelling behavior while low serotonin levels in-
crease roaming. Animals lacking the tph-1 gene,
necessary for serotonin production, exhibited lower

long-term consistency levels in the roaming activity of
individuals across all developmental stages [10]. The
decrease in individuality in roaming activity was recap-
tured in animals mutant for the serotonin receptor ser-4,
suggesting that serotonin may act via specific receptors
and potentially through specific neuronal circuits to
shape individuality. In contrast, mutations in other
neuronal genes such as npr-1 (neuropeptide receptor),
daf-7 (TGF-b), and tdc-1 (necessary for tyramine/
octopamine production) increased the levels of in-
dividuality in roaming speed within the population

without affecting individuality levels in the fraction of
time spent roaming. Overall, this study implicates spe-
cific neuromodulatory pathways in controlling long-term
behavioral diversity among individuals.

More recent work extended the quantification of
behavioral individuality using unsupervised detection of
unique modes of body movements, which revealed
changes in individuality levels across multiple popula-
tions subjected to neuromodulatory perturbations [12].
www.sciencedirect.com
The variable effects of multiple neuromodulatory genes
on individual variation, which may depend on the spe-
cific behavioral parameter, suggest that the effects of
diverse neuromodulatory systems may be integrated to
generate a ‘profile’ of individuality composed of
different behaviors. The effects of the same neuro-
modulators on behavioral variation across different spe-
cies implies a conserved evolutionary role for

neuromodulatory signaling in shaping behavioral di-
versity within populations.

3. Early life experience impacts behavioral variation
among individuals
The influence of environmental experiences on
neuronal and behavioral states during distinct develop-
mental stages has been explored in many species
[44e48]. Sensory stimuli experienced during early life
periods, known as critical periods, can generate life-long
behavioral effects that are highly stable. Newly hatched
C. elegans exposed to pathogenic PA14 bacteria show
long-lasting aversive memory across development that is
formed and executed using defined neural circuitry and
neuromodulators [46]. Moreover, adult individuals that
went through a starvation-induced dauer stage early in

development show less behavioral exploration than an-
imals that did not experience dauer. These behavioral
changes were associated with changes in neurons that
are known to be involved in navigation [49]. In addition,
early life starvation during the L1 stage generates
distinct behavioral responses across different develop-
mental stages that are controlled via opposite functions
of dopamine and serotonin [11].

While animals show stereotyped behavioral effects that
are shared by many individuals within the population

when exposed to the same environment, individuals can
also showmodes of behavioral responses that are unique.
Previous studies in mice have demonstrated that envi-
ronmental enrichment at an early stage can increase
behavioral diversity [50]. In addition, environmental
enrichment in flies led to changes in individual variation
that depended on the behavior, genotype, and enrich-
ment paradigm [51]. In C. elegans, analyzing behavioral
variation among individuals across development,
following starvation early in life (L1 arrest), revealed
stress-induced changes in individuality [11]. In partic-

ular, by utilizing unsupervised methods for detecting
temporal patterns of individual biases across develop-
ment, it was demonstrated that multiple ‘individuality
types’ exist within the isogenic population and that
different stress regimes early in life can change the
composition of these individuality types. In addition,
the effects of early stress depend on the neuro-
modulatory state of the population [11]; for example, in
serotonin-deficient individuals (tph-1) where consis-
tency levels are relatively low, early-life starvation led to
Current Opinion in Neurobiology 2025, 91:102984
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increased consistency in roaming activity. Overall, these
effects of early-life experiences on both the average
behavioral response of the population, as well as on the
diversity in behavioral responses within the population,
suggest a close interaction between the environment
and the nervous system in generating variation, even
within isogenic populations that are exposed to the same
early environment. An open question is whether

generating or constraining behavioral variation by the
environment may have a fitness effect on the isogenic
population. A plausible hypothesis is that upon a
stressful or unpredictable environment, it will be
beneficial to increase variation in behavioral strategies,
thus increasing the probability of the population to
survive a wide diversity of scenarios [52,53].

4. Gene expression as a source of variability in behavior
In many instances, changes in gene expression have
been identified as a causal source of behavioral vari-
ability. Gene expression can differ across individuals,
over development, and dynamically in adulthood,
providing a flexible means to alter neural function. As is
described above, transcriptional changes due to genetic
sex are widespread in C. elegans. Recently, these effects

have been mapped across development. Comparison of
the whole transcriptome of males and hermaphrodites
from early larval stages to adulthood uncovered
numerous differentially expressed genes, including
neuronal gene families like transcription factors, neu-
ropeptides, and GPCRs, highlighting the notion that
molecular mechanisms might drive sex-specific traits at
each developmental stage [54].

Across both sexes, the daf-7 gene provides an instruc-
tive example of how gene expression can be influenced

by many factors to alter behavior. While daf-7 is
expressed in ASI neurons in both males and her-
maphrodites, it is also expressed in ASJ neurons in
male C. elegans, which drives an exploratory mate-
seeking behavior [55]. This ASJ-specific expression in
males is driven by the PDF neuropeptide system [56],
which promotes exploratory behaviors under many cir-
cumstances. In hermaphrodites, daf-7 becomes
expressed in ASJ neurons only under specific circum-
stances related to the animal’s internal state. ASJ plays
a key role in exploratory food-leaving decisions in

healthy hermaphrodites [57]. In addition, infection by
a pathogen leads to daf-7 expression in ASJ, which in-
duces exploratory food-leaving behavior to avoid the
pathogenic food source [58]. Animals that can smell
food that they are not currently ingesting upregulate
daf-7 in ASJ, which contributes to their exploratory
food search [59]. These studies suggest that the
regulation of daf-7 expression in ASJ based on a
multitude of factors controls exploratory behaviors
under different circumstances (Fig. 2b).
Current Opinion in Neurobiology 2025, 91:102984
Changes in feeding state have also been shown to cause
changes in gene expression in many cases. Adult her-
maphrodites deprived of food upregulate a large set of
olfactory receptors, which contribute to hunger state-
dependent behavioral changes [60e62]. Similar signa-
tures of gene expression can be found in larval animals
that have passed through dauer diapause arrest [63].
Metabolic changes can also impact expression of daf-7
expression in ASI neurons [64]. In addition, starvation of
young larvae alters the expression of a biosynthetic
enzyme required for octopamine production, which can
have a long-lasting impact on circuit function by altering
synaptic pruning [65]. Moreover, stochastic differences
in gene-expression [66,67] may also be a potential
source of variation in neuronal function. Through these
diverse mechanisms, changes in gene expression can
cause immediate or long-lasting changes in behavior.

5. Variability in nervous system structure contributes to

behavioral variation
Neuronal connections, or connectomes, are critical de-
terminants of an animal’s behavioral repertoire, linking
the structural intricacies of neural circuits directly to the
execution of complex behaviors. The C. elegans wiring
diagram has been crucial for mapping circuits and link-
ing them to behavior, and the completion of the male
connectome almost three decades after that of the
hermaphrodite has added considerable depth to our
ability to deconstruct sex-specific behaviors [68e70]. In
addition, a connectome from an animal in dauer
diapause has also been reconstructed recently, which
will aid our understanding of early-life stress on con-
nectivity [71]. However, given the nervous system’s
ability to adapt its connections based on experience and
inter-animal variability, it was unclear whether these

static maps of connectivity were representative of all
animals. A recent study added valuable data by recon-
structing the nerve ring connectomes of eight additional
animals across development [72]. This study found that
isogenic animals exhibited both stereotyped and vari-
able connections. The layout of the interneuron circuit,
the “decision-making” portion of the nervous system,
remains largely stable across development and between
individuals. However, maturation changes how sensory
information is integrated and relayed to downstream
neurons. Thus, variation in nervous system structure

occurs across development and between individuals. In
addition, it was estimated that more than 30 % of the
connections vary between hermaphrodites and males
[70]. Since only one male connectome currently exists,
it is hard to evaluate, solely based on those electron-
micrograph reconstructions, the extent of sex-
dependent wiring variability in C. elegans. Sexually
dimorphic behavioral responses to aversive stimuli have
been previously reported in C. elegans [73]. Imaging of
interneurons in response to aversive stimuli revealed
www.sciencedirect.com

www.sciencedirect.com/science/journal/09594388


Behavioral variability in C. elegans Flavell et al. 7
variability in their activity across male individuals, where
some males exhibited hermaphrodite-like neuronal ac-
tivity levels [73]. It is possible that such functional
differences may arise from variability in connectivity
between individual males. Future work will be necessary
to evaluate the relationship between sex, connectivity,
and behavior at the individual animal level.
Concluding remarks
The individual’s genetics, developmental trajectory, and
environmental influences converge to shape its behav-
ioral repertoire. This review has highlighted the
sequential organization of these factors, from genetic

sex determination to the modulation by internal states,
each layer adding complexity and adaptability to
behavioral outcomes. As research progresses, further
exploration into this behavioral landscape will enhance
our understanding of the robust yet flexible nature
of behavior.
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